已知△ABC,∠ACB=90°,AC=BC.
(1)如圖1,將邊AB繞點B順時針旋轉(zhuǎn)至BP的位置,BP交AC于點Q,連接CP,使得CP∥AB.若BC=22,求CP的長度;
(2)如圖2,點G在AC邊上,將線段CG繞點C順時針旋轉(zhuǎn)90°得到線段CE,連接EG并延長交AB于點H,D是線段HB上一點,AH=DH,連接ED,CH.求證:ED=2CH;
(3)如圖3,延長BA至點P,使PA=12AB,連接PC,將線段PC繞點C順時針旋轉(zhuǎn)90°得到線段CT,連接AT,過點C作CK⊥AB于點K,點G在線段AK上,連接TG,將△TAG沿TG翻折,點A的對應(yīng)點A'恰好落在CK上,M是邊BC上一點,連接GM,將△BGM沿GM翻折到△B'GM,B'G與BC交于點H.當點G,A',B'共線時,直接寫出HMMB′的值.

2
2
1
2
HM
MB
′
【考點】幾何變換綜合題.
【答案】(1)2-2;
(2)證明見解析部分;
(3).
3
(2)證明見解析部分;
(3)
3
(
2
2
-
1
)
7
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/8 20:30:2組卷:348引用:1難度:0.1
相似題
-
1.如圖1~圖3所示,△ABC是直角三角形,∠BCA=90°,AC>BC.點O是射線AC上的一點,點M是射線BC上的一點,且BM=OA,把點M繞點O逆時針旋轉(zhuǎn)90°落在點N處,直線AN和直線OB相交于點P.
(1)當點O與點C重合時,點N必然落在AC上,且點P與點C重合,如圖2所示,請你直接寫出此時線段AN與線段OB的數(shù)量關(guān)系及∠APB的大小;
(2)當點O在如圖1所示的位置時,(1)中關(guān)于線段AN和線段OB的數(shù)量關(guān)系及∠APB大小的結(jié)論還成立嗎?如果成立,請給出證明過程;如果不成立,請說明理由;
(3)當點O在如圖3所示的位置時,(1)中關(guān)于線段AN和線段OB的數(shù)量關(guān)系及∠APB大小的結(jié)論還成立嗎?請直接給出結(jié)論,不用說明理由.發(fā)布:2025/6/8 15:30:1組卷:36引用:1難度:0.2 -
2.(1)感知:如圖①,在Rt△ABC中,∠ACB=90°.D,E分別是AC,BC的中點,連結(jié)DE.則△CDE和△CAB的面積比是 .
(2)探究:將圖①中△CDE繞點C順時針旋轉(zhuǎn),使點E在△CAB的內(nèi)部.再連結(jié)AD,EF,延長BE交AC于點O,交AD于點F,如圖②.
①求證:△ACD~△BCE;②求證:AD⊥BF;
(3)拓展:將圖①中的△CDE繞點C順時針旋轉(zhuǎn)90°,使點D恰好落在BC的延長線上,點E在AC上.連結(jié)AD,BE,并延長BE交AD與點F,其他條件不變,如圖③.若AC=8,BC=6,求BF的長.發(fā)布:2025/6/8 15:30:1組卷:15引用:1難度:0.4 -
3.在平面直角坐標系中,已知點A(2,4),B(6,4),連接AB,將AB向下平移5個單位得線段CD,其中點A的對應(yīng)點為點C
(1)填空:點C的坐標為,線段AB平移到CD掃過的面積為;
(2)若點P是y軸上的動點,連接PD.
①如圖(1),當點P在y軸正半軸時,線段PD與線段AC相交于點E,用等式表示三角形PEC的面積與三角形ECD的面積之間的關(guān)系,并說明理由;
②當PD將四邊形ACDB的面積分成2:3兩部分時,求點P的坐標.發(fā)布:2025/6/8 14:30:2組卷:613引用:7難度:0.4