試卷征集
加入會員
操作視頻

設(shè)等腰三角形的底邊長為w,底邊上的高長為h,定義k=
h
w
為等腰三角形的“胖瘦度”.設(shè)坐標(biāo)系內(nèi)兩點(diǎn)P(x1,y1),Q(x2,y2),x1≠x2,y1≠y2,若P,Q為等腰三角形的兩個頂點(diǎn),且該等腰三角形的底邊與某條坐標(biāo)軸垂直,則稱這個等腰三角形為點(diǎn)P,Q的“逐夢三角形”.
(1)設(shè)△ABC是底邊長為2的等腰直角三角形,則△ABC的“胖瘦度”k=
1
2
1
2
;
(2)設(shè)P(5,0),點(diǎn)Q為y軸正半軸上一點(diǎn),若P,Q的“逐夢三角形”的“胖瘦度”k=5,直接寫出點(diǎn)Q的坐標(biāo):
(0,50)或(0,
1
2
(0,50)或(0,
1
2
;
(3)以x軸,y軸為對稱軸的正方形ABCD的一個頂點(diǎn)為A(a,a),且點(diǎn)A在第一象限,點(diǎn)P(12+
1
2
a,8+
2
3
a),若正方形ABCD邊上不存在點(diǎn)Q使得P,Q的“逐夢三角形”滿足k=5且h≤5,直接寫出a的取值范圍:
a>39或a=24或0<a≤
45
2
a>39或a=24或0<a≤
45
2

【考點(diǎn)】四邊形綜合題
【答案】
1
2
;(0,50)或(0,
1
2
);a>39或a=24或0<a≤
45
2
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/16 1:0:1組卷:152引用:1難度:0.4
相似題
  • 1.已知△ABC是等邊三角形,四邊形ADEF是菱形,∠ADE=120°(AD>AB).

    (1)如圖①,當(dāng)AD與邊BC相交,點(diǎn)D與點(diǎn)F在直線AC的兩側(cè)時,BD與CF的數(shù)量關(guān)系為
     

    (2)將圖①中的菱形ADEF繞點(diǎn)A旋轉(zhuǎn)α(0°<α<180°),如圖②.
    Ⅰ.判斷(1)中的結(jié)論是否仍然成立,請利用圖②證明你的結(jié)論.
    Ⅱ.若AC=4,AD=6,當(dāng)△ACE為直角三角形時,直接寫出CE的長度.

    發(fā)布:2025/6/25 7:30:2組卷:365引用:4難度:0.1
  • 2.探究問題:
    (1)方法感悟:
    如圖①,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
    感悟解題方法,并完成下列填空:
    證明:延長CB到G,使BG=DE,連接AG,
    ∵四邊形ABCD為正方形,
    ∴AB=AD,∠ABC=∠D=90°,
    ∴∠ABG=∠D=90°,
    ∴△ADE≌△ABG.
    ∴AG=AE,∠1=∠2;
    ∵四邊形ABCD為正方形,
    ∴∠BAD=90°,
    ∵∠EAF=45°,
    ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
    ∵∠1=∠2,
    ∴∠1+∠3=45°.
    即∠GAF=∠

    又AG=AE,AF=AF,
    ∴△GAF≌

    ∴FG=EF,
    ∵FG=FB+BG,
    又BG=DE,
    ∴DE+BF=EF.
    變化:在圖①中,過點(diǎn)A作AM⊥EF于點(diǎn)M,請直接寫出AM和AB的數(shù)量關(guān)系
    ;
    (2)方法遷移:

    如圖②,將Rt△ABC沿斜邊AC翻折得到Rt△ADC,E,F(xiàn)分別是BC,CD邊上的點(diǎn),∠EAF=
    1
    2
    ∠BAD,連接EF,過點(diǎn)A作AM⊥EF于點(diǎn)M,試猜想DF,BE,EF之間有何數(shù)量關(guān)系,并證明你的猜想.試猜想AM與AB之間的數(shù)量關(guān)系,并證明你的猜想.
    (3)問題拓展:
    如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點(diǎn),滿足∠EAF=
    1
    2
    ∠DAB,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由).猜想:∠B與∠D滿足關(guān)系:

    發(fā)布:2025/6/24 19:0:1組卷:879引用:1難度:0.1
  • 3.如圖,四邊形ABCD是正方形,E是正方形ABCD內(nèi)一點(diǎn),F(xiàn)是正方形ABCD外一點(diǎn),連接BE、CE、DE、BF、CF、EF.
    (1)若∠EDC=∠FBC,ED=FB,試判斷△ECF的形狀,并說明理由.
    (2)在(1)的條件下,當(dāng)BE:CE=1:2,∠BEC=135°時,求BE:BF的值.
    (3)在(2)的條件下,若正方形ABCD的邊長為(3
    3
    +
    7
    )cm,∠EDC=30°,求△BCF的面積.

    發(fā)布:2025/6/24 17:30:1組卷:59引用:1難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正