閱讀下列材料:利用完全平方公式,將多項(xiàng)式x2+bx+c變形為(x+m)2+n的形式,然后由(x+m)2≥0就可求出多項(xiàng)式x2+bx+c的最小值.
例題:求x2-12x+37的最小值
解:x2-12x+37=x2-2x?6+62-62+37=(x-6)2+1
∵不論x取何值,(x-6)2總是非負(fù)數(shù),即(x-6)2≥0.
∴(x-6)2+1≥1
∴當(dāng)x=6時(shí),x2-12x+37有最小值,最小值是1.

根據(jù)上述材料,解答下列問題:
(1)填空:x2-14x+4949=(x-77)2.
(2)將x2+10x-2變形為(x+m)2+n的形式,并求出x2+10x-2的最小值.
(3)如圖所示的第一個(gè)長方形邊長分別是2a+5、3a+2,面積為S1,如圖所示的第二個(gè)長方形邊長分別是5a、a+5,面積為S2,試比較S1與S2的大小,并說明理由.
【答案】49;7
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:107引用:3難度:0.6
相似題
-
1.已知x2+y2-2x+6y+10=0,則x2+y2=.
發(fā)布:2025/6/8 19:0:1組卷:475引用:2難度:0.7 -
2.發(fā)現(xiàn)與探索.
小麗的思考:
代數(shù)式(a-3)2+4
無論a取何值(a-3)2都大于等于0,再加上4,則代數(shù)式(a-3)2+4大于等于4.
根據(jù)小麗的思考解決下列問題:
(1)說明:代數(shù)式a2-12a+20的最小值為-16.
(2)請(qǐng)仿照小麗的思考求代數(shù)式-a2+10a-8的最大值.發(fā)布:2025/6/8 21:0:2組卷:729引用:3難度:0.7 -
3.已知A=x2+6x+n2,B=2x2+4x+2n2+3,下列結(jié)論正確的個(gè)數(shù)為( ?。?br />①若A=x2+6x+n2是完全平方式,則n=±3;
②B-A的最小值是2;
③若n是A+B=0的一個(gè)根,則;4n2+1n2=659
④若(2022-A)(A-2019)=0,則(2022-A)2+(A-2019)2=4.發(fā)布:2025/6/8 17:0:2組卷:119引用:2難度:0.6