問題提出
(1)如圖①,點(diǎn)M為⊙O外一點(diǎn),點(diǎn)A在⊙O上,⊙O的半徑為3,MO=5,則MA的最大值是88,MA的最小值是22.
問題探究
(2)如圖②,在正方形ABCD內(nèi)部有一點(diǎn)P,連接PD=3,PC=6,∠DPC=135°,求PB的長;
問題解決
(3)如圖③,所示區(qū)域?yàn)槟承^(qū)一塊空地,∠BAD=∠ADC=90°,AB=20m,AD=103m,CD=10m,?BC所對的圓心角為60°,該物業(yè)管理部門計(jì)劃在這塊空地內(nèi)部點(diǎn)P處建造一個(gè)涼亭,同時(shí)在?BC上取一點(diǎn)Q,從P點(diǎn)分別向A、D、Q處修建文化長廊,為了節(jié)約修建文化長廊的成本,不考慮其他因素,是否存在這樣的點(diǎn)P,使得PA+PD+PQ最小,若存在,請求PA+PD+PQ的最小值;若不存在,請說明理由.

3
?
BC
?
BC
【考點(diǎn)】圓的綜合題.
【答案】8;2
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:582引用:2難度:0.1
相似題
-
1.如圖是小宇同學(xué)的錯(cuò)題積累本的部分內(nèi)容,請仔細(xì)閱讀,并完成相應(yīng)的任務(wù).
x年x月x日星期日
錯(cuò)題積累
在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于點(diǎn)D,
O是AB上一點(diǎn),且⊙O經(jīng)過B,D兩點(diǎn),分別交AB,BC于
點(diǎn)E,F(xiàn).
…
[自勉]
讀書使人頭腦充實(shí),討論使人明辨是非,做筆記則能使知識(shí)精確.
——培根
(1)使用直尺和圓規(guī),根據(jù)題目要求補(bǔ)全圖形(不寫作法,保留作圖痕跡);
(2)求證:⊙O與AC相切于點(diǎn)D;
(3)若CD=,∠BDC=60°,則劣弧3的長為 .?ED發(fā)布:2025/5/24 1:30:2組卷:125引用:2難度:0.2 -
2.【問題提出】如圖1,AB為⊙O的一條弦,點(diǎn)C在弦AB所對的優(yōu)弧上運(yùn)動(dòng)時(shí),根據(jù)圓周角性質(zhì),我們知道∠ACB的度數(shù)不變.愛動(dòng)腦筋的小芳猜想,如果平面內(nèi)線段AB的長度已知,∠ACB的大小確定,那么點(diǎn)C是不是在某個(gè)確定的圓上運(yùn)動(dòng)呢?
【問題探究】為了解決這個(gè)問題,小芳先從一個(gè)特殊的例子開始研究.如圖2,若AB=4,線段AB上方一點(diǎn)C滿足∠ACB=45°,為了畫出點(diǎn)C所在的圓,小芳以AB為底邊構(gòu)造了一個(gè)Rt△AOB,再以點(diǎn)O為圓心,OA為半徑畫圓,則點(diǎn)C在⊙O上.后來小芳通過逆向思維及合情推理,得出一個(gè)一般性的結(jié)論.即:若線段AB的長度已知,∠ACB的大小確定,則點(diǎn)C一定在某一個(gè)確定的圓上,即定弦定角必定圓,我們把這樣的幾何模型稱之為“定弦定角”模型.
【模型應(yīng)用】
(1)若AB=6,平面內(nèi)一點(diǎn)C滿足∠ACB=60°,若點(diǎn)C所在圓的圓心為O,則∠AOB=,劣弧AB的長為 .
(2)如圖3,已知正方形ABCD以AB為腰向正方形內(nèi)部作等腰△ABE,其中AB=AE,過點(diǎn)E作EF⊥AB于點(diǎn)F,若點(diǎn)P是△AEF的內(nèi)心.
①求∠BPE的度數(shù);
②連接CP,若正方形ABCD的邊長為4,求CP的最小值.發(fā)布:2025/5/24 1:30:2組卷:547引用:3難度:0.5 -
3.如圖,⊙O的直徑AB=10,弦BC=
,點(diǎn)P是⊙O上的一動(dòng)點(diǎn)(不與點(diǎn)A、B重合,且與點(diǎn)C分別位于直徑AB的異側(cè)),連接PA,PC,過點(diǎn)C作PC的垂線交PB的延長線于點(diǎn)D.25
(1)求tan∠BPC的值;
(2)隨著點(diǎn)P的運(yùn)動(dòng),的值是否會(huì)發(fā)生變化?若變化,請說明理由,若不變,則求出它的值;BDAP
(3)運(yùn)動(dòng)過程中,AP+2BP的最大值是多少?請你直接寫出它來.發(fā)布:2025/5/24 2:0:8組卷:1335引用:3難度:0.2
相關(guān)試卷