如圖,已知二次函數L1:y=ax2-2ax+a+3(a>0)和二次函數L2:y=-a(x+1)2+1(a>0)圖象的頂點分別為M,N,與y軸分別交于點E,F.
(1)函數y=ax2-2ax+a+3(a>0)的最小值為33,當二次函數L1,L2的y值同時隨著x的增大而減小時,x的取值范圍是-1≤x≤1-1≤x≤1.
(2)當EF=MN時,求a的值,并判斷四邊形ENFM的形狀(直接寫出,不必證明).
(3)若二次函數L2的圖象與x軸的右交點為A(m,0),當△AMN為等腰三角形時,求方程-a(x+1)2+1=0的解.
【考點】二次函數綜合題.
【答案】3;-1≤x≤1
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2025/6/19 8:30:1組卷:2933引用:55難度:0.5
相似題
-
1.如圖所示,二次函數y=k(x-1)2+2的圖象與一次函數y=kx-k+2的圖象交于A、B兩點,點B在點A的右側,直線AB分別與x、y軸交于C、D兩點,其中k<0.
(1)求A、B兩點的橫坐標;
(2)若△OAB是以OA為腰的等腰三角形,求k的值;
(3)二次函數圖象的對稱軸與x軸交于點E,是否存在實數k,使得∠ODC=2∠BEC,若存在,求出k的值;若不存在,說明理由.發(fā)布:2025/6/22 14:0:2組卷:5631難度:0.1 -
2.六個函數分別是①y=x;②y=-x+1;③y=x2;④y=-x2+2x-1;⑤y=x3;⑥y=-x3+1.
(1)其中一次函數是①,②,二次函數是③,④,則⑤,⑥的函數可以定義為
(2)我們可以借鑒以前研究函數的經驗,先探索函數y=x3的圖象和性質;
①填寫下表,畫出函數的圖象;
②觀察圖象,寫出該函數兩條不同類型的性質;
(3)若點A(a,b)(a>0)是函數y=x3圖象上一點,點A關于y軸的對稱點為點B,點A關于原點O的對稱點為點C,若順次連接A,B,C,則△ABC的形狀為x … -2 - 32-1 0 1 322 … y=x3 … …
(4)函數y=-x3+1的圖象關于點發(fā)布:2025/6/22 8:30:1組卷:47引用:2難度:0.3 -
3.如圖1,二次函數y=ax2-2ax-3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側),與y軸的正半軸交于點C,頂點為D.
(1)求頂點D的坐標(用含a的代數式表示);
(2)若以AD為直徑的圓經過點C.
①求拋物線的函數關系式;
②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內某一點旋轉180°,得到△PMN(點P、M、N分別和點O、B、E對應),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標;
③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.發(fā)布:2025/6/22 11:0:2組卷:4122引用:11難度:0.1