如圖,已知長方形ABCD的一條邊AD=8cm,點P在CD邊上,AP=AB,PC=4cm,連結(jié)PB.點M從點P出發(fā),沿PA方向勻速運動(點M與點P、A不重合);點N同時從點B出發(fā),沿線段AB的延長線勻速運動,連結(jié)MN交PB于點F.
(1)求AB的長;
(2)若點M的運動速度為1cm/s,點N的運動速度為2cm/s,點M和點N的運動時間為t,求當(dāng)AN=2AM時,t為多少?
(3)若點M和點N的運動速度相等,作ME⊥BP于點E.試問當(dāng)點M、N在運動過程中,線段EF的長度是否發(fā)生變化?若變化,說明理由;若不變,求出線段EF的長度.
【考點】四邊形綜合題.
【答案】(1)10;(2)2.5;(3)2cm.
5
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:7引用:1難度:0.3
相似題
-
1.如圖,△AMN是邊長為2的等邊三角形,以AN,AM所在直線為邊的平行四邊形ABCD交MN于點E、F,且∠EAF=30°.
(1)當(dāng)F、M重合時,求AD的長;
(2)當(dāng)NE、FM滿足什么條件時,能使;32(NE+FM)=EF
(3)在(2)的條件下,求證:四邊形ABCD是菱形.發(fā)布:2025/5/26 2:30:2組卷:150引用:2難度:0.1 -
2.【探究發(fā)現(xiàn)】(1)如圖1,在四邊形ABCD中,對角線AC⊥BD,垂足是O,求證:AB2+CD2=AD2+BC2.
【拓展遷移】(2)如圖2,以三角形ABC的邊AB、AC為邊向外作正方形ABDE和正方形ACFG,求證:CE⊥BG.
(3)如圖3,在(2)小題條件不變的情況下,連接GE,若∠EGA=90°,GE=6,AG=8,求BC的長.發(fā)布:2025/5/26 2:30:2組卷:957引用:6難度:0.3 -
3.問題情境:
在數(shù)學(xué)課上,老師給出了這樣一道題:如圖1,在△ABC中,AB=AC=6,∠BAC=30°,求BC的長.
探究發(fā)現(xiàn):
(1)如圖2,勤奮小組經(jīng)過思考后發(fā)現(xiàn):把△ABC繞點A順時針旋轉(zhuǎn)90°得到△ADE,連接BD,BE,利用直角三角形的性質(zhì)可求BC的長,其解法如下:
過點B作BH⊥DE交DE的延長線于點H,則BC=DE=DH-HE.
△ABC繞點A順時針旋轉(zhuǎn)90°得到△ADE,AB=AC=6,∠BAC=30°∴……
請你根據(jù)勤奮小組的思路,完成求解過程.
拓展延伸:
(2)如圖3,縝密小組的同學(xué)在勤奮小組的啟發(fā)下,把△ABC繞點A順時針旋轉(zhuǎn)120°后得到△ADE,連接BD,CE交于點F,交AB于點G,請你判斷四邊形ADFC的形狀并證明;
(3)奇異小組的同學(xué)把圖3中的△BGF繞點B順時針旋轉(zhuǎn),在旋轉(zhuǎn)過程中,連接AF,發(fā)現(xiàn)AF的長度不斷變化,直接寫出AF的最大值和最小值.發(fā)布:2025/5/26 3:0:2組卷:83引用:1難度:0.3