已知雙曲線Γ:x2a2-y2b2=1(a>0,b>0),直線l:x+y-2=0,F(xiàn)1,F(xiàn)2為雙曲線Γ的兩個(gè)焦點(diǎn),l與雙曲線Γ的一條漸近線平行且過(guò)其中一個(gè)焦點(diǎn).
(1)求雙曲線Γ的方程;
(2)設(shè)Γ與l的交點(diǎn)為P,求∠F1PF2的角平分線所在直線的方程.
x
2
a
2
-
y
2
b
2
=
1
【考點(diǎn)】雙曲線的幾何特征.
【答案】(1)x2-y2=2;
(2)3x-y-4=0.
(2)3x-y-4=0.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:621引用:2難度:0.5
相似題
-
1.若雙曲線
-x28=1的漸近線方程為y=±2x,則實(shí)數(shù)m等于( )y2mA.4 B.8 C.16 D.32 發(fā)布:2025/1/5 18:30:5組卷:26引用:1難度:0.9 -
2.已知F1,F(xiàn)2為橢圓和雙曲線的公共焦點(diǎn),P是它們的公共點(diǎn),且∠F1PF2=
,e1,e2分別為橢圓和雙曲線的離心率,則π3的值為( )4e1e23e12+e22A.1 B.2 C.3 D.4 發(fā)布:2025/1/2 23:30:3組卷:203引用:2難度:0.5 -
3.已知雙曲線
的右焦點(diǎn)為F(2,0),漸近線方程為x2a2-y2b2=1(a>0,b>0),則該雙曲線實(shí)軸長(zhǎng)為( )3x±y=0A.2 B.1 C. 3D. 23發(fā)布:2025/1/2 19:0:5組卷:136引用:2難度:0.7