問題提出:如圖1所示,等邊△ABC內(nèi)接于⊙O,點(diǎn)P是?AB上的任意一點(diǎn),連接PA,PB,PC.線段PA,PB,PC滿足怎樣的數(shù)量關(guān)系?
(1)嘗試解決:為了解決這個(gè)問題,小明給出這種解題思路:由條件CA=CB,∠ACB=60°,從而將CP繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°交PB延長(zhǎng)線于點(diǎn)M,從而證明△PAC≌△MBC,請(qǐng)你完成余下思考,并直接寫出答案:PA,PB,PC的數(shù)量關(guān)系是 PC=PA+PBPC=PA+PB;
(2)自主探索:如圖2所示,把原問題中的“等邊△ABC”改成“正方形ABCD”,其余條件不變,
①PC與PA,PB有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由;
②PC+PD與PA,PB的數(shù)量關(guān)系是 PC+PD=(2+1)(PA+PB)PC+PD=(2+1)(PA+PB).(直接寫出結(jié)果)
(3)學(xué)以致用:如圖3所示,在Rt△ABC中,∠BAC=90°,AB=AC=8,BE=45,連接CE,以CE為底作等腰直角三角形CDE,F(xiàn)是BE邊上的一點(diǎn),連接AD和AF,且∠FAD=45°,則BF的長(zhǎng)為 2525.

?
AB
2
+
1
2
+
1
BE
=
4
5
5
5
【考點(diǎn)】圓的綜合題.
【答案】PC=PA+PB;PC+PD=()(PA+PB);2
2
+
1
5
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/12 3:0:1組卷:157引用:1難度:0.2
相似題
-
1.如圖1,以點(diǎn)O為圓心,半徑為4的圓交x軸于A,B兩點(diǎn),交y軸于C,D兩點(diǎn),點(diǎn)P為劣弧AC上的一動(dòng)點(diǎn),延長(zhǎng)CP交x軸于點(diǎn)E;連接PB,交OC于點(diǎn)F.
(1)若點(diǎn)F為OC的中點(diǎn),求PB的長(zhǎng);
(2)求CP?CE的值;
(3)如圖2,過點(diǎn)O作OH∥AP交PD于點(diǎn)H,當(dāng)點(diǎn)P在弧AC上運(yùn)動(dòng)時(shí),連接AC,PC.試問△APC與△OHD相似嗎?說明理由;的值是否保持不變?若不變,試證明,求出它的值;若發(fā)生變化,請(qǐng)說明理由.APDH發(fā)布:2025/6/24 18:30:1組卷:272引用:1難度:0.5 -
2.如圖,已知⊙O′與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),圓心O′的坐標(biāo)是(1,-1),半徑為
.5
(1)比較線段AB與CD的大?。?br />(2)求A、B、C、D四點(diǎn)的坐標(biāo);
(3)過點(diǎn)D作⊙O′的切線,試求這條切線的解析式.發(fā)布:2025/6/24 20:0:2組卷:43引用:1難度:0.5 -
3.下面是“用三角板畫圓的切線”的畫圖過程.
如圖1,已知圓上一點(diǎn)A,畫過A點(diǎn)的圓的切線.畫法:
(1)如圖2,將三角板的直角頂點(diǎn)放在圓上任一點(diǎn)C(與點(diǎn)A不重合)處,使其一直角邊經(jīng)過點(diǎn)A,另一條直角邊與圓交于B點(diǎn),連接AB;
(2)如圖3,將三角板的直角頂點(diǎn)與點(diǎn)A重合,使一條直角邊經(jīng)過點(diǎn)B,畫出另一條直角邊所在的直線AD.則直線AD就是過點(diǎn)A的圓的切線.
請(qǐng)回答:①這種畫法是否正確 (是或否);
②你判斷的依據(jù)是:.發(fā)布:2025/6/25 8:0:1組卷:19引用:1難度:0.4