如圖所示,已知橢圓x29+y2=1中A(3,0),B(0,1);P在橢圓上且為第一象限內(nèi)的點(diǎn),直線(xiàn)PA與y軸交于點(diǎn)M,直線(xiàn)PB與x軸交于點(diǎn)N.

(1)求證:①|(zhì)AN|?|BM|為定值;
②△PMN與△PAB面積之差為定值;
(2)求△MON面積的最小值.
x
2
9
+
y
2
=
1
【考點(diǎn)】直線(xiàn)與橢圓的綜合;橢圓的幾何特征.
【答案】(1)①|(zhì)AN|?|BM|為定值6,證明見(jiàn)解答;
②△PMN與△PAB面積之差為定值3,證明見(jiàn)解答;
(2).
②△PMN與△PAB面積之差為定值3,證明見(jiàn)解答;
(2)
9
+
6
2
2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/7 5:0:8組卷:95引用:1難度:0.3
相似題
-
1.已知橢圓C:
=1(a>b>0)的一個(gè)頂點(diǎn)坐標(biāo)為A(0,-1),離心率為x2a2+y2b2.32
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線(xiàn)y=k(x-1)(k≠0)與橢圓C交于不同的兩點(diǎn)P,Q,線(xiàn)段PQ的中點(diǎn)為M,點(diǎn)B(1,0),求證:點(diǎn)M不在以AB為直徑的圓上.發(fā)布:2024/12/29 12:30:1組卷:370引用:4難度:0.5 -
2.設(shè)橢圓
+x2a2=1(a>b>0)的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為y2b2,|AB|=53.13
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線(xiàn)l:y=kx(k<0)與橢圓交于P,Q兩點(diǎn),直線(xiàn)l與直線(xiàn)AB交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若△BPM的面積是△BPQ面積的2倍,求k的值.發(fā)布:2024/12/29 12:30:1組卷:4528引用:26難度:0.3 -
3.如果橢圓
的弦被點(diǎn)(4,2)平分,則這條弦所在的直線(xiàn)方程是( ?。?/h2>x236+y29=1發(fā)布:2024/12/18 3:30:1組卷:456引用:3難度:0.6