如圖所示,(a+b)n與相應(yīng)的楊輝三角中的一行數(shù)相對(duì)應(yīng).

由以上規(guī)律可知:
(a+b)2=a2+2ab+b2;
(a+b)3=a3+3a2b+3ab2+b3;
(a+b)4=a4+4a3b+6a2b2+4ab3+b4.
請(qǐng)你寫出下面兩個(gè)式子的結(jié)果:
(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5a5+5a4b+10a3b2+10a2b3+5ab4+b5;
(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6.
【答案】a5+5a4b+10a3b2+10a2b3+5ab4+b5;a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/22 16:0:1組卷:22引用:1難度:0.7