試卷征集
加入會(huì)員
操作視頻

已知橢圓C:
x
2
a
2
+
y
2
b
2
=1(a>b>0)的離心率
2
2
,短軸長(zhǎng)為2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)為橢圓C的右焦點(diǎn),過(guò)F的直線l與C交于A,B兩點(diǎn),點(diǎn)M的坐標(biāo)為(2,0),證明:∠OMA=∠OMB.

【考點(diǎn)】直線與橢圓的綜合
【答案】(Ⅰ)
x
2
2
+y2=1;
(Ⅱ)證明:由(1)知橢圓C的右焦點(diǎn)為F(1,0),
設(shè)直線l:x=my+1,
設(shè)直線l與橢圓C的交點(diǎn)為A(x1,y1),B(x2,y2),
聯(lián)立橢圓x2+2y2=2,
 得(2+m2)y2+2my-1=0,
Δ=4m2+4(2+m2)>0恒成立,
y1+y2=-
2
m
2
+
m
2
,y1y2=-
1
2
+
m
2

kAM+kBM=
y
1
x
1
-
2
+
y
2
x
2
-
2

=
y
1
x
2
-
2
+
y
2
x
1
-
2
x
1
-
2
x
2
-
2
=
y
1
m
y
2
-
1
+
y
2
m
y
1
-
1
x
1
-
2
x
2
-
2

=
2
m
y
1
y
2
-
y
1
+
y
2
x
1
-
2
x
2
-
2

由2my1y2-(y1+y2)=2m?(-
1
2
+
m
2
)-(-
2
m
2
+
m
2
)=0,
可得kAM+kBM=0,
則∠OMA=∠OMB.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/8 3:0:9組卷:127引用:5難度:0.5
相似題
  • 1.已知橢圓C:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的一個(gè)頂點(diǎn)坐標(biāo)為A(0,-1),離心率為
    3
    2

    (Ⅰ)求橢圓C的方程;
    (Ⅱ)若直線y=k(x-1)(k≠0)與橢圓C交于不同的兩點(diǎn)P,Q,線段PQ的中點(diǎn)為M,點(diǎn)B(1,0),求證:點(diǎn)M不在以AB為直徑的圓上.

    發(fā)布:2024/12/29 12:30:1組卷:370引用:4難度:0.5
  • 2.設(shè)橢圓
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為
    5
    3
    ,|AB|=
    13

    (Ⅰ)求橢圓的方程;
    (Ⅱ)設(shè)直線l:y=kx(k<0)與橢圓交于P,Q兩點(diǎn),直線l與直線AB交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若△BPM的面積是△BPQ面積的2倍,求k的值.

    發(fā)布:2024/12/29 12:30:1組卷:4528引用:26難度:0.3
  • 3.如果橢圓
    x
    2
    36
    +
    y
    2
    9
    =
    1
    的弦被點(diǎn)(4,2)平分,則這條弦所在的直線方程是( ?。?/h2>

    發(fā)布:2024/12/18 3:30:1組卷:456引用:3難度:0.6
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正