如圖,在平面直角坐標(biāo)系中,拋物線y=x2+bx-5交y軸于點(diǎn)A,交x軸于點(diǎn)B(-5,0)和點(diǎn)C(1,0),過點(diǎn)A作AD∥x軸交拋物線于點(diǎn)D.
(1)求此拋物線的表達(dá)式;
(2)點(diǎn)E是拋物線上一點(diǎn),且點(diǎn)E關(guān)于x軸的對稱點(diǎn)在直線AD上,求△EAD的面積;
(3)若點(diǎn)P是直線AB下方的拋物線上一動點(diǎn),當(dāng)點(diǎn)P運(yùn)動到某一位置時,△ABP的面積最大,求出此時點(diǎn)P的坐標(biāo)和△ABP的最大面積.
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)y=x2+4x-5;
(2)20;
(3)點(diǎn)p的坐標(biāo)是(,-)時,△ABP的面積最大,此時△ABP的面積是.
(2)20;
(3)點(diǎn)p的坐標(biāo)是(
-
5
2
35
4
125
8
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:75引用:1難度:0.1
相似題
-
1.我們把一個半圓與拋物線的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個交點(diǎn),那么這條直線叫做“蛋圓”的切線.如圖所示,點(diǎn)A、B、C、D分別是“蛋圓”與坐標(biāo)軸的交點(diǎn),已知點(diǎn)D的坐標(biāo)為(0,-3),AB為半圓的直徑,半圓圓心M的坐標(biāo)為(1,0),半圓半徑為2.
(1)請你求出“蛋圓”拋物線部分的解析式,并寫出自變量的取值范圍;
(2)你能求出經(jīng)過點(diǎn)C的“蛋圓”切線的解析式嗎?試試看;
(3)開動腦筋想一想,相信你能求出經(jīng)過點(diǎn)D的“蛋圓”切線的解析式.發(fā)布:2025/6/8 14:30:2組卷:237引用:45難度:0.1 -
2.如圖,一條拋物線與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),其頂點(diǎn)P在線段MN上移動.若點(diǎn)M、N的坐標(biāo)分別為(-1,-2)、(1,-2),點(diǎn)B的橫坐標(biāo)的最大值為3,則點(diǎn)A的橫坐標(biāo)的最小值為( ?。?/h2>
發(fā)布:2025/6/8 8:0:6組卷:4103引用:19難度:0.7 -
3.已知函數(shù)y=
,記該函數(shù)圖象為G.-12x2+12x+m(x<m)x2-mx+m(x≥m)
(1)當(dāng)m=2時,
①已知M(4,n)在該函數(shù)圖象上,求n的值;
②當(dāng)0≤x≤2時,求函數(shù)G的最大值.
(2)當(dāng)m>0時,作直線x=m與x軸交于點(diǎn)P,與函數(shù)G交于點(diǎn)Q,若∠POQ=45°時,求m的值;12
(3)當(dāng)m≤3時,設(shè)圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,過點(diǎn)B作BC⊥BA交直線x=m于點(diǎn)C,設(shè)點(diǎn)A的橫坐標(biāo)為a,C點(diǎn)的縱坐標(biāo)為c,若a=-3c,求m的值.發(fā)布:2025/6/8 14:30:2組卷:3081引用:7難度:0.1