【問題情境 建構(gòu)函數(shù)】
(1)如圖1,在矩形ABCD中,AB=4,M是CD的中點,AE⊥BM,垂足為E.設(shè)BC=x,AE=y,試用含x的代數(shù)式表示y.
【由數(shù)想形 新知初探】
(2)在上述表達式中,y與x成函數(shù)關(guān)系,其圖象如圖2所示.若x取任意實數(shù),此時的函數(shù)圖象是否具有對稱性?若有,請說明理由,并在圖2上補全函數(shù)圖象.

【數(shù)形結(jié)合 深度探究】
(3)在“x取任意實數(shù)”的條件下,對上述函數(shù)繼續(xù)探究,得出以下結(jié)論:①函數(shù)值y隨x的增大而增大;②函數(shù)值y的取值范圍是-42<y<42;③存在一條直線與該函數(shù)圖象有四個交點;④在圖象上存在四點A、B、C、D,使得四邊形ABCD是平行四邊形.其中正確的是 ①④①④.(寫出所有正確結(jié)論的序號)
【抽象回歸 拓展總結(jié)】
(4)若將(1)中的“AB=4”改成“AB=2k”,此時y關(guān)于x的函數(shù)表達式是 y=2kxx2+k2x2+k2(x>0,k>0)y=2kxx2+k2x2+k2(x>0,k>0);一般地,當k≠0,x取任意實數(shù)時,類比一次函數(shù)、反比例函數(shù)、二次函數(shù)的研究過程,探究此類函數(shù)的相關(guān)性質(zhì)(直接寫出3條即可).
2
2
2
kx
x
2
+
k
2
x
2
+
k
2
2
kx
x
2
+
k
2
x
2
+
k
2
【考點】反比例函數(shù)綜合題.
【答案】①④;y=(x>0,k>0)
2
kx
x
2
+
k
2
x
2
+
k
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/7 8:0:9組卷:2417引用:5難度:0.3
相似題
-
1.探究:是否存在一個新矩形,使其周長和面積為原矩形的2倍、
倍、k倍.12
(1)若該矩形為正方形,是否存在一個正方形,使其周長和面積都為邊長為2的正方形的2倍?(填“存在”或“不存在”).
(2)繼續(xù)探究,是否存在一個矩形,使其周長和面積都為長為3,寬為2的矩形的2倍?
同學(xué)們有以下思路:
①設(shè)新矩形長和寬為x、y,則依題意x+y=10,xy=12,聯(lián)立得x2-10x+12=0,再探究根的情況;x+y=10xy=12
根據(jù)此方法,請你探究是否存在一個矩形,使其周長和面積都為原矩形的倍;12
②如圖也可用反比例函數(shù)與一次函數(shù)證明l1:y=-x+10,l2:y=,那么,12x
a.是否存在一個新矩形為原矩形周長和面積的2倍?.
b.請?zhí)骄渴欠裼幸恍戮匦沃荛L和面積為原矩形的,若不存在,用圖象表達;12
c.請直接寫出當結(jié)論成立時k的取值范圍:.發(fā)布:2025/5/25 12:0:2組卷:4070引用:4難度:0.3 -
2.數(shù)學(xué)是一個不斷思考,不斷發(fā)現(xiàn),不斷歸納的過程,古希臘數(shù)學(xué)家帕普斯(Pappus,約300-350)把∠AOB三等分的操作如下:
(1)以點O為坐標原點,OB所在的直線為x軸建立平面直角坐標系;
(2)在平面直角坐標系中,繪制反比例函數(shù)y=(x>0)的圖象,圖象與∠AOB的邊OA交于點C;1x
(3)以點C為圓心,2OC為半徑作弧,交函數(shù)y=的圖象于點D;1x
(4)分別過點C和D作x軸和y軸的平行線,兩線交于點E,M;
(5)作射線OE,交CD于點N,得到∠EOB.
任務(wù)二:請證明∠EOB=∠AOB.13發(fā)布:2025/5/25 14:0:1組卷:196引用:4難度:0.3 -
3.如圖,在平面直角坐標系中,點A在x軸的正半軸上,點B在x軸的負半軸上,點C在y軸的正半軸上,直線BC的解析式為y=kx+6,線段OB、OA的長是一元二次方程x2-13x+36=0的兩個根,且OB<OA.
(1)求點A、點B的坐標;
(2)若直線l過點A交線段BC于點D,且S△ABD:S△ADC=1:2,求經(jīng)過點D的反比例函數(shù)的解析式;
(3)平面內(nèi)滿足以A、C、P為頂點的三角形與△ABC相似的點P有 個.并直接寫出滿足條件的第一象限內(nèi)兩個點P的坐標.發(fā)布:2025/5/25 15:0:2組卷:116引用:1難度:0.2
相關(guān)試卷