△ABC中,∠BAC=60°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作菱形ADEF,使∠DAF=60°,連接CF.
(1)觀察猜想:如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),
①AB與CF的位置關(guān)系為:AB∥CFAB∥CF.
②BC,CD,CF之間的數(shù)量關(guān)系為:CF+CD=BCCF+CD=BC;
(2)數(shù)學(xué)思考:如圖2,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫(xiě)出正確結(jié)論再給予證明.
(3)拓展延伸:如圖3,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),設(shè)AD與CF相交于點(diǎn)G,若已知AB=4,CD=12AB,求AG的長(zhǎng).

1
2
【考點(diǎn)】四邊形綜合題.
【答案】AB∥CF;CF+CD=BC
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:432引用:4難度:0.1
相似題
-
1.[證明體驗(yàn)]
(1)如圖1,在△ABC中,點(diǎn)D在邊BC上,點(diǎn)F在邊AC上,AB=AD,F(xiàn)B=FC,AD與BF相交于點(diǎn)E.求證:∠ABF=∠CAD.
[思考探究]
(2)如圖2,在(1)的條件下,過(guò)點(diǎn)D作AB的平行線交AC于點(diǎn)G,若DE=2AE,AB=6,求DG的長(zhǎng).
[拓展延伸]
(3)如圖3,在四邊形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,AC⊥AD,∠ABC=∠ACB=67.5°,OD=2OB,OA=,求CD的長(zhǎng).2發(fā)布:2025/5/23 23:30:1組卷:687引用:3難度:0.3 -
2.如圖,在矩形ABCD中,AD=
AB,∠BAD的平分線交BC于點(diǎn)E.DH⊥AE于點(diǎn)H,連接BH并延長(zhǎng)交CD于點(diǎn)F,連接DE交BF于點(diǎn)O,下列結(jié)論:①AD=AE;②∠AED=∠CED;③OE=OD;④BH=HF;⑤BC-CF=2HE,其中正確的有( ?。?/h2>2發(fā)布:2025/5/23 22:30:2組卷:1273引用:4難度:0.2 -
3.【問(wèn)題提出】
(1)如圖①,OP為∠AOB的平分線,PC⊥OA于點(diǎn)C,PD⊥OB于點(diǎn)D,若S△OPC=3,則S△OPD=
【問(wèn)題探究】
(2)如圖②,a、b是兩條平行的直線,且a、b之間的距離為12,點(diǎn)A為直線a上一點(diǎn),點(diǎn)B、C為直線b上兩點(diǎn),且點(diǎn)B在點(diǎn)C的左側(cè),若∠BAC=45°,求BC的最小值;
【問(wèn)題解決】
(3)如圖③,四邊形ABCD是園林規(guī)劃局欲修建的一塊平行四邊形園林的大致示意圖,沿對(duì)角線BD修一條人行走道,沿∠BAD的平分線AP(點(diǎn)P在BD上)修一條園林灌溉水渠.根據(jù)規(guī)劃要求,∠ABC=120°,AP=120米,且使得平行四邊形ABCD的面積盡可能小,問(wèn)平行四邊形ABCD的面積是否存在最小值?若存在,求出其最小值,若不存在,請(qǐng)說(shuō)明理由.發(fā)布:2025/5/23 22:30:2組卷:137引用:1難度:0.2
相關(guān)試卷