問題情境:
在綜合與實踐課上,老師讓同學們以“矩形紙片的剪拼”為主題開展數學活動.如圖①,將矩形紙片ABCD沿對角線AC剪開,得到△ABC和△ACD.
操作發(fā)現:
(1)將圖①中的△ACD以點A為旋轉中心,按逆時針方向旋轉∠α,使∠α=∠BAC,得到如圖②所示的△AC'D,過點C作AC'的平行線,與DC'的延長線交于點E,判斷四邊形ACEC′的形狀,并給出證明;
(2)創(chuàng)新小組將圖①中的△ACD以點A為旋轉中心,按逆時針方向旋轉,使B,A,D三點在同一條直線上,得到如圖③所示的△AC′D,連接CC',取CC'的中點F,連接AF并延長至點G,使FG=AF,連接CG,C'G,得到四邊形ACGC',發(fā)現它是正方形,請你證明這個結論.
【考點】四邊形綜合題.
【答案】(1)以點A、C、E、C′為頂點的四邊形是菱形,理由見解答;
(2)四邊形ACGC′是正方形,理由見解答.
(2)四邊形ACGC′是正方形,理由見解答.
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/7/19 8:0:9組卷:55引用:4難度:0.1
相似題
-
1.如圖,在矩形ABCD中,AD=
AB,∠BAD的平分線交BC于點E.DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結論:①AD=AE;②∠AED=∠CED;③OE=OD;④BH=HF;⑤BC-CF=2HE,其中正確的有( ?。?/h2>2發(fā)布:2025/5/23 22:30:2組卷:1273難度:0.2 -
2.【問題提出】
(1)如圖①,OP為∠AOB的平分線,PC⊥OA于點C,PD⊥OB于點D,若S△OPC=3,則S△OPD=
【問題探究】
(2)如圖②,a、b是兩條平行的直線,且a、b之間的距離為12,點A為直線a上一點,點B、C為直線b上兩點,且點B在點C的左側,若∠BAC=45°,求BC的最小值;
【問題解決】
(3)如圖③,四邊形ABCD是園林規(guī)劃局欲修建的一塊平行四邊形園林的大致示意圖,沿對角線BD修一條人行走道,沿∠BAD的平分線AP(點P在BD上)修一條園林灌溉水渠.根據規(guī)劃要求,∠ABC=120°,AP=120米,且使得平行四邊形ABCD的面積盡可能小,問平行四邊形ABCD的面積是否存在最小值?若存在,求出其最小值,若不存在,請說明理由.發(fā)布:2025/5/23 22:30:2組卷:137引用:1難度:0.2 -
3.如圖,在菱形ABCD中,AB=4,∠BAD=60°,點P從點A出發(fā),沿線段AD以每秒1個單位長度的速度向終點D運動,過點P作PQ⊥AB于點Q,作PM⊥AD交直線AB于點M,交直線BC于點F,設△PQM與菱形ABCD重疊部分圖形的面積為S(平方單位),點P的運動時間為t(s)(0≤t≤4).
(1)當點M與點B重合時,t=s;
(2)當t為何值時,△APQ≌△BMF;
(3)求S與t的函數關系式;
(4)以線段PQ為邊,在PQ右側作等邊△PQE,當2≤t≤4時,請直接寫出點E運動路徑的長.發(fā)布:2025/5/23 21:0:1組卷:200引用:1難度:0.1