如圖,拋物線y=ax2+bx+c交x軸于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)A、C的坐標(biāo)分別為(-6,0),(0,6),對(duì)稱軸x=-2交x軸于E,點(diǎn)D為拋物線頂點(diǎn).

(1)求拋物線的解析式;
(2)點(diǎn)P是直線AC下方的拋物線上一點(diǎn),且S△PAC=2S△DAC.求P的坐標(biāo);
(3)M為拋物線對(duì)稱軸上一點(diǎn),是否存在以B、C、M為頂點(diǎn)的三角形是等腰三角形,若存在,請(qǐng)求出點(diǎn)M的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1);
(2)(2,0),(-8,-10);
(3)存在,(-2,0)或(-2,2)或或.
y
=
-
1
2
x
2
-
2
x
+
6
(2)(2,0),(-8,-10);
(3)存在,(-2,0)或(-2,2)或
(
-
2
,
2
6
)
(
-
2
,-
2
6
)
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/27 9:0:1組卷:426引用:5難度:0.3
相似題
-
1.已知:在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2+bx-3(a>0)的圖象與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè),與y軸交于點(diǎn)C,且OC=OB=3OA.
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)點(diǎn)D是點(diǎn)C關(guān)于此拋物線對(duì)稱軸的對(duì)稱點(diǎn),直線AD,BC交于點(diǎn)P,試判斷直線AD,BC是否垂直,并證明你的結(jié)論;
(3)在(2)的條件下,若點(diǎn)M,N分別是射線PC,PD上的點(diǎn),問(wèn):是否存在這樣的點(diǎn)M,N的坐標(biāo),使得以點(diǎn)P,M,N為頂點(diǎn)的三角形與△ACP全等?若存在,請(qǐng)求出點(diǎn)M,N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.發(fā)布:2025/6/17 11:30:1組卷:129引用:1難度:0.4 -
2.如圖,直線y1=-x+3與x軸于交于點(diǎn)B,與y軸交于點(diǎn)C.拋物線y2=-x2+bx+c經(jīng)過(guò)B、C兩點(diǎn),并與x軸另一個(gè)交點(diǎn)為A.
(1)求拋物線y2的解析式;
(2)若點(diǎn)M在拋物線上,且S△MOC=4S△AOC,求點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P是線段BC上一動(dòng)點(diǎn),過(guò)P作PQ⊥x軸,交拋物線于點(diǎn)Q,求線段PQ長(zhǎng)度的最大值.發(fā)布:2025/6/17 2:0:1組卷:1010引用:3難度:0.3 -
3.如圖,已知拋物線y=ax2+bx+c過(guò)點(diǎn)A(6,0),B(-2,0),C(0,-3).
(1)求此拋物線的解析式;
(2)若點(diǎn)H是該拋物線第四象限的任意一點(diǎn),求四邊形OCHA的最大面積;
(3)若點(diǎn)Q在x軸上,點(diǎn)G為該拋物線的頂點(diǎn),且∠QGA=45°,求點(diǎn)Q的坐標(biāo).發(fā)布:2025/6/16 23:0:1組卷:401引用:5難度:0.5