已知橢圓C:x2a2+y2b2=1(a>b>0)過點(1,32),且長軸長等于4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)F1,F(xiàn)2是橢圓C的兩個焦點,⊙O是以F1,F(xiàn)2為直徑的圓,直線l:y=kx+m與⊙O相切,并與橢圓C交于不同的兩點A,B,若OA?OB=-32,求k的值.
x
2
a
2
y
2
b
2
3
2
OA
OB
3
2
【考點】橢圓的標(biāo)準(zhǔn)方程.
【答案】(I);
(II).
x
2
4
+
y
2
3
=
1
(II)
k
的值為
:
±
2
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1070引用:34難度:0.3
相似題
-
1.已知橢圓的標(biāo)準(zhǔn)方程為
,則橢圓的焦點坐標(biāo)為( ?。?/h2>x210+y2=1A. (10,0),(-10,0)B. (0,10),(0,-10)C.(0,3),(0,-3) D.(3,0),(-3,0) 發(fā)布:2024/11/24 8:0:2組卷:1251引用:2難度:0.9 -
2.把橢圓
繞左焦點按順時針方向旋轉(zhuǎn)90°,則所得橢圓的準(zhǔn)線方程為.x225+y29=1發(fā)布:2024/12/1 8:0:1組卷:28引用:1難度:0.5 -
3.已知方程
表示曲線C,則下列說法正確的是( ?。?/h2>y24-2a+x2a=1A.“a>2”是“曲線C為雙曲線”的充分不必要條件 B.“0<a<2”是“曲線C為橢圓”的充要條件 C.若曲線C表示焦點在x軸上的橢圓,則1<a<2 D.若曲線C表示焦點在y軸上的雙曲線,則a<0 發(fā)布:2024/12/19 18:30:1組卷:236引用:7難度:0.6