【問題探究】
(1)如圖1,△ABC和△DEC均為等腰直角三角形,∠ACB=∠DCE=90°,點B,D,E在同一直線上,連接AD,BD.
①請?zhí)骄緼D與BD之間的位置關(guān)系:AD⊥BDAD⊥BD;
②若AC=BC=10,DC=CE=2,則線段AD的長為44;
【拓展延伸】
(2)如圖2,△ABC和△DEC均為直角三角形,∠ACB=∠DCE=90°,AC=21,BC=7,CD=3,CE=1.將△DCE繞點C在平面內(nèi)順時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角∠BCD為α(0°≤α<360°),作直線BD,連接AD,當(dāng)點B,D,E在同一直線上時,畫出圖形,并求線段AD的長.

10
2
21
7
3
【考點】幾何變換綜合題.
【答案】AD⊥BD;4
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/21 15:0:1組卷:4034引用:10難度:0.3
相似題
-
1.如圖,四邊形ABCD是矩形紙片,AB=2.對折矩形紙片ABCD,使AD與BC重合,折痕為EF;展平后再過點B折疊矩形紙片,使點A落在EF上的點N,折痕BM與EF相交于點Q;再次展平,連接BN,MN,延長MN交BC于點G.有如下結(jié)論:
①∠ABN=60°;②AM=1;③QN=;④△BMG是等邊三角形;⑤P為線段BM上一動點,H是BN的中點,則PN+PH的最小值是33.3
其中正確結(jié)論的序號是.發(fā)布:2025/5/23 1:30:2組卷:3126引用:15難度:0.5 -
2.如圖1,四邊形ABCD中,∠BCD=90°,AC=AD,AF⊥CD于點F,交BD于點E,∠ABD=2∠BDC.
(1)判斷線段AE與BC的關(guān)系,并說明理由;
(2)若∠BDC=30°,求∠ACD的度數(shù);
(3)如圖2,在(2)的條件下,線段BD與AC交于點O,點G是△BCE內(nèi)一點,∠CGE=90°,GE=3,將△CGE繞著點C逆時針旋轉(zhuǎn)60°得△CMH,E點對應(yīng)點為M,G點的對應(yīng)點為H,且點O,G,H在一條直線上直接寫出OG+OH的值.發(fā)布:2025/5/22 19:0:1組卷:523引用:1難度:0.2 -
3.如圖1,在Rt△ABC中,∠BAC=90°,∠ACB=60°,AC=1,點A1,B1為邊AC,BC的中點,連接A1B1,將△A1B1C繞點C逆時針旋轉(zhuǎn)α(0°≤α≤360°).
(1)如圖1,當(dāng)α=0°時,=;BB1,AA1所在直線相交所成的較小夾角的度數(shù)是 ;BB1AA1
(2)將△A1B1C繞點C逆時針旋轉(zhuǎn)至圖2所示位置時,(1)中結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)當(dāng)△A1B1C繞點C逆時針旋轉(zhuǎn)過程中,請直接寫出S△ABA1的最大值,S△ABA1=.發(fā)布:2025/5/22 19:0:1組卷:432引用:3難度:0.4
相關(guān)試卷