閱讀理解:如圖,等腰直角△ABC中,∠ABC=90°,AB=BC,點A,B分別在坐標軸上.
(1)如圖①,過點C作CG⊥y軸于點G,若點C的橫坐標為5,求點B的坐標.

(2)如圖②,將△ABC擺放至x軸恰好平分∠BAC,BC交x軸于點M,過點C作CD⊥x軸于點D,求CDAM的值.

(3)如圖③,若點A坐標為(-4,0),分別以OB,AB為直角邊在第一、第二象限作等腰Rt△OBF與等腰Rt△ABE,連接EF交y軸于點P.當B點在y軸正半軸上移動時,PB的長度是否會發(fā)生改變?若改變,請說明理由,若不改變,請直接寫出PB的長度.

CD
AM
【考點】相似形綜合題.
【答案】(1)(0,5);
(2);
(3)PB的長度不變,理由見解答過程;2.
(2)
1
2
(3)PB的長度不變,理由見解答過程;2.
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/8/9 8:0:9組卷:71難度:0.5
相似題
-
1.如圖,在Rt△ABC中,∠ABC=90°.AB=BC.點D是線段AB上的一點,連接CD.過點B作BG⊥CD,分別交CD、CA于點E、F,與過點A且垂直于AB的直線相交于點G,連接DF,給出以下四個結論:①
=AGAB;②若點D是AB的中點,則AF=AFFCAB;③當B、C、F、D四點在同一個圓上時,DF=DB;④若23=DBAD,則S△ABC=9S△BDF,其中正確的結論序號是( ?。?/h2>12發(fā)布:2025/6/24 16:30:1組卷:2780引用:11難度:0.2 -
2.在圖形的全等變換中,有旋轉變換,翻折(軸對稱)變換和平移變換.一次數學活動課上,老師組織大家利用矩形進行圖形變換的探究活動.
(1)第一小組的同學發(fā)現,在如圖1-1的矩形ABCD中,AC、BD相交于點O,Rt△ADC可以由Rt△ABC經過一種變換得到,請你寫出這種變換的過程
(2)第二小組同學將矩形紙片ABCD按如下順序進行操作:對折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點B落在EF上的點B′處(如圖2-2),這樣能得到∠B′GC的大小,你知道∠B′GC的大小是多少嗎?請寫出求解過程.
(3)第三小組的同學,在一個矩形紙片上按照圖3-1的方式剪下△ABC,其中BA=BC,將△ABC沿著直線AC的方向依次進行平移變換,每次均移動AC的長度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,AC長為a,現以AD、AF和AH為三邊構成一個新三角形,已知這個新三角形面積小于15,請你幫助該小組求出a可能的最大整數值.15
(4)探究活動結束后,老師給大家留下了一道探究題:
如圖4-1,已知AA′=BB′=CC′=2,∠AOB′=∠BOC′=∠COA′=60°,請利用圖形變換探究S△AOB′+S△BOC′+S△COA′與的大小關系.3發(fā)布:2025/6/24 14:30:1組卷:370引用:12難度:0.5 -
3.【探究發(fā)現】如圖1,△ABC是等邊三角形,∠AEF=60°,EF交等邊三角形外角平分線CF所在的直線于點F,當點E是BC的中點時,有AE=EF成立;
【數學思考】某數學興趣小組在探究AE、EF的關系時,運用“從特殊到一般”的數學思想,通過驗證得出如下結論:
當點E是直線BC上(B,C除外)任意一點時(其它條件不變),結論AE=EF仍然成立.
假如你是該興趣小組中的一員,請你從“點E是線段BC上的任意一點”;“點E是線段BC延長線上的任意一點”;“點E是線段BC反向延長線上的任意一點”三種情況中,任選一種情況,在備用圖1中畫出圖形,并證明AE=EF.
【拓展應用】當點E在線段BC的延長線上時,若CE=BC,在備用圖2中畫出圖形,并運用上述結論求出S△ABC:S△AEF的值.發(fā)布:2025/6/24 15:30:2組卷:1871引用:6難度:0.1