在平面直角坐標系xOy中,對于點P和線段ST,我們定義點P關于線段ST的線段比k=PSST(PS<PT) PTST(PS≥PT)
.
(1)已知點A(0,1),B(1,0),C(5,0).
①點A關于線段BC的線段比k=2424;
②點C關于線段AB的線段比k=2222;
③點G(0,c)關于線段AB的線段比k=22,求c的值.
(2)已知點M(m,0),點N(m+2,0),直線y=x+2與坐標軸分別交于E,F(xiàn)兩點,若線段EF上存在點使得這一點關于線段MN的線段比k≤12,直接寫出m的取值范圍.
PS ST ( PS < PT ) |
PT ST ( PS ≥ PT ) |
2
4
2
4
2
2
2
1
2
【考點】一次函數(shù)綜合題.
【答案】;2
2
4
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/6/11 6:30:1組卷:186引用:1難度:0.1
相似題
-
1.如圖,直線AB:y=
x+b,其中B(-1,0),點A橫坐標為4,點C(3,0),直線FG垂直平分線段BC.33
(1)求b的值與直線AC的函數(shù)表達式;
(2)D是直線FG上一點,且位于x軸上方,將△BCD翻折得到△BC'D′,若C'恰好落在線段FG上,求C'和點D的坐標;
(3)設P是直線AC上位于FG右側的一點,點Q在直線FG上,當△CPQ為等邊三角形時,求BP的函數(shù)表達式.發(fā)布:2025/6/12 11:30:1組卷:1082引用:3難度:0.6 -
2.在平面直角坐標系中,直線l1:y=2x+3與過點B(6,0)的直線l2交于點C(1,m),與x軸交于點A,與y軸交于點E,直線l2與y軸交于點D.
(1)求直線l2的函數(shù)解析式;
(2)如圖1,點F在直線l2位于第二象限的圖象上,使得S△BEF=4?S△OEF,求點F的坐標.
(3)如圖2,在線段BC存在點M,使得△CEM是以CM為腰的等腰三角形,求M點坐標.發(fā)布:2025/6/12 12:30:1組卷:1656引用:3難度:0.4 -
3.如圖,在平面直角坐標系中,函數(shù)y=2x+18的圖象分別交x軸、y軸于A、B兩點.過點A的直線交y軸正半軸于點M,且點M為線段OB的中點.
(1)求直線AM的解析式;
(2)在直線AM上找一點P,使得S△ABP=S△AOB,求出點P的坐標;
(3)若點H為坐標平面內(nèi)任意一點,在坐標平面內(nèi)是否存在這樣的點H,使以A、B、M、H為頂點的四邊形是平行四邊形?若存在,請直接寫出點H的坐標;若不存在,請說明理由.發(fā)布:2025/6/12 12:30:1組卷:432引用:2難度:0.3