已知直線l:y=-2,拋物線C:y=ax2-1經(jīng)過點(2,0)
(1)求a的值;
(2)如圖①,點P是拋物線C上任意一點,過點P作直線l的垂線,垂足為Q.求證:PO=PQ;
(3)請你參考(2)中的結(jié)論解決下列問題
1.如圖②,過原點作直線交拋物線C于A,B兩點,過此兩點作直線l的垂線,垂足分別為M,N,連接ON,OM,求證:OM⊥ON;
2.如圖③,點D(1,1),使探究在拋物線C上是否存在點F,使得FD+FO取得最小值?若存在,求出點F的坐標(biāo),若不存在,請說明理由.

【考點】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/17 2:0:1組卷:411引用:5難度:0.3
相似題
-
1.如圖,直線l:y=-3x+3與x軸、y軸分別相交于A、B兩點,拋物線y=ax2-2ax+a+4(a<0)經(jīng)過點B.
(1)求該拋物線的函數(shù)表達式;
(2)已知點M是拋物線上的一個動點,并且點M在第一象限內(nèi),連接AM、BM,設(shè)點M的橫坐標(biāo)為m,△ABM的面積為S,求S與m的函數(shù)表達式,并求出S的最大值;
(3)在(2)的條件下,當(dāng)S取得最大值時,動點M相應(yīng)的位置記為點M′.
①寫出點M′的坐標(biāo);
②將直線l繞點A按順時針方向旋轉(zhuǎn)得到直線l′,當(dāng)直線l′與直線AM′重合時停止旋轉(zhuǎn),在旋轉(zhuǎn)過程中,直線l′與線段BM′交于點C,設(shè)點B、M′到直線l′的距離分別為d1、d2,當(dāng)d1+d2最大時,求直線l′旋轉(zhuǎn)的角度(即∠BAC的度數(shù)).發(fā)布:2025/6/9 17:0:1組卷:5423引用:12難度:0.1 -
2.如圖,在平面直角坐標(biāo)系中,四邊形OABC為菱形,點C的坐標(biāo)為(4,0),∠AOC=60°,垂直于x軸的直線l從y軸出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,設(shè)直線l與菱形OABC的兩邊分別交于點M、N(點M在點N的上方).
(1)求A、B兩點的坐標(biāo);
(2)設(shè)△OMN的面積為S,直線l運動時間為t秒(0≤t≤6),試求S與t的函數(shù)表達式;
(3)在題(2)的條件下,t為何值時,S的面積最大?最大面積是多少?發(fā)布:2025/6/9 17:0:1組卷:570引用:26難度:0.1 -
3.已知拋物線y=3ax2+2bx+c,
(1)若a=b=1,c=-1,求該拋物線與x軸交點的坐標(biāo);
(2)若a=b=1,且當(dāng)-1<x<1時,拋物線與x軸有且只有一個交點.求c的取值范圍;
(3)若a+b+c=0,且x1=0時,對應(yīng)的y1>0;x2=1時,對應(yīng)的y2>0,試判斷當(dāng)0<x<1時,拋物線與x軸是否有交點?若有,請證明你的結(jié)論;若沒有,闡述理由.發(fā)布:2025/6/9 16:0:2組卷:365引用:2難度:0.1