如圖,二次函數y=ax2+bx+c與x軸交于A(-1,0)、B(5,0)兩點,與y軸交于點C(0,-5),點P是y軸上一點.
(1)求拋物線的解析式;
(2)若∠ACB=∠PBC,求點P的坐標;
(3)若CP=2,過點P的直線y=kx+d(k>0)與拋物線交于M、N兩點(M在N的左側).當S△CNP-S△CMP=26時,求k的值.
6
【考點】二次函數綜合題.
【答案】(1)y=x2-4x-5;
(2)點P(0,1);
(3)k=-4+4或2-4.
(2)點P(0,1);
(3)k=-4+4
2
6
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/9/26 20:0:1組卷:109引用:1難度:0.4
相似題
-
1.如圖,拋物線y=ax2+
經過△ABC的三個頂點,點A坐標為(-1,2),點B是點A關于y軸的對稱點,點C在x軸的正半軸上.94
(1)求該拋物線的函數關系表達式;
(2)點F為線段AC上一動點,過F作FE⊥x軸,FG⊥y軸,垂足分別為E、G,當四邊形OEFG為正方形時,求出F點的坐標.發(fā)布:2025/6/16 19:30:1組卷:730引用:9難度:0.4 -
2.如圖,直線y1=-x+3與x軸于交于點B,與y軸交于點C.拋物線y2=-x2+bx+c經過B、C兩點,并與x軸另一個交點為A.
(1)求拋物線y2的解析式;
(2)若點M在拋物線上,且S△MOC=4S△AOC,求點M的坐標;
(3)設點P是線段BC上一動點,過P作PQ⊥x軸,交拋物線于點Q,求線段PQ長度的最大值.發(fā)布:2025/6/17 2:0:1組卷:1010引用:3難度:0.3 -
3.如圖,已知拋物線y=ax2+bx+c過點A(6,0),B(-2,0),C(0,-3).
(1)求此拋物線的解析式;
(2)若點H是該拋物線第四象限的任意一點,求四邊形OCHA的最大面積;
(3)若點Q在x軸上,點G為該拋物線的頂點,且∠QGA=45°,求點Q的坐標.發(fā)布:2025/6/16 23:0:1組卷:401引用:5難度:0.5