如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(1,0),點B在y軸上,將△OAB沿x軸負(fù)方向平移,平移后的圖形為△DEC,且點C的坐標(biāo)為(-3,2).
(1)直接寫出點E的坐標(biāo);
(2)在四邊形ABCD中,點P從點B出發(fā),沿BC→CD移動,若點P的速度為每秒1個單位長度,運動時間為x秒,回答下列問題:
①用含有x的式子表示點P的坐標(biāo),寫出自變量取值范圍;
②當(dāng)x=22秒時,點P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù).
(3)求P運動多少秒時,△PEA的面積為2?
【考點】四邊形綜合題.
【答案】2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/6 8:0:9組卷:31引用:2難度:0.3
相似題
-
1.如圖,∠MON=90°,四邊形ABCD是正方形,且點A、D始終分別在射線OM和ON上.
(1)如圖1,若AB=4,點A、D在OM,ON上滑動過程中,OB何時取最大值,并求出此最大值.
(2)如圖2,點P在AB上,且∠PDA=∠ODA,DP交AC于點F,延長射線BF交AD,ON分別于點G、Q.
①求證:BQ⊥ON.
②若OD=,求△DFQ的周長.6發(fā)布:2025/6/9 5:0:1組卷:50引用:2難度:0.1 -
2.菱形ABCD中,AB=4,∠B=60°,E,F(xiàn)分別是AB,AD上的動點,且BE=AF,連接EF,交AC于G,則下列結(jié)論:①△BEC≌△AFC;②△ECF為等邊三角形;③CE的最小值為2
.其中正確的結(jié)論是( ?。?/h2>3發(fā)布:2025/6/9 5:30:2組卷:355引用:7難度:0.4 -
3.如圖,在四邊形ABCD中,AD∥BC,∠ABC+∠BCD=180°,E是CD中點,過點A作AE⊥AF交CB延長線于F,AD=1,CF=a.
(1)若CD=2,求四邊形ABCD的周長.
(2)若AF=2,AE=,求a的值;3
(3)若AE+AF=a+1,S四邊形ADCF=a+2;求AD與BC間的距離.發(fā)布:2025/6/9 6:30:1組卷:160引用:3難度:0.1