如圖1,△ABC中,AB=AC,∠B、∠C的平分線交于O點(diǎn),過(guò)O點(diǎn)作EF∥BC交AB、AC于E、F.

(1)猜想:EF與BE、CF之間有怎樣的關(guān)系.
(2)如圖2,若AB≠AC,其他條件不變,在第(1)問(wèn)中EF與BE、CF間的關(guān)系還存在嗎?并說(shuō)明理由.
(3)如圖3,若△ABC中∠B的平分線BO與三角形外角平分線CO交于O,過(guò)O點(diǎn)作OE∥BC交AB于E,交AC于F.這時(shí)圖中還有等腰三角形嗎?EF與BE、CF關(guān)系又如何?說(shuō)明你的理由.
【考點(diǎn)】三角形綜合題.
【答案】(1)EF=BE+CF;(2)第(1)問(wèn)中EF與BE、CF間的關(guān)系還存在,即EF=BE+CF.理由見(jiàn)解析;(3)圖中還存在等腰三角形△BEO和△CFO,此時(shí)EF=BE-CF,理由見(jiàn)解析.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/3 1:0:1組卷:427引用:6難度:0.5
相似題
-
1.(1)問(wèn)題發(fā)現(xiàn):如圖①,△ABC和△EDC都是等邊三角形,點(diǎn)B、D、E在同一條直線上,連接AE.
①∠AEC的度數(shù)為 ;
②線段AE、BD之間的數(shù)量關(guān)系為 ;
(2)拓展探究:如圖②,△ABC和△EDC都是等腰直角三角形、∠ACB=∠DCE=90°,點(diǎn)B、D、E在同一條直線上,CM為△EDC中DE邊上的高,連接AE,試求∠AEB的度數(shù)及判斷線段CM、AE、BM之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)解決問(wèn)題:如圖③,△ABC和△EDC都是等腰三角形,∠ACB=∠DCE=36°,點(diǎn)B、D,E在同一條直線上,請(qǐng)直接寫(xiě)出∠EAB+∠ECB的度數(shù).發(fā)布:2025/6/5 19:30:2組卷:3697引用:33難度:0.3 -
2.在平面直角坐標(biāo)系中,A(6,a),B(b,0),M(0,c),且
,P點(diǎn)為y軸上一動(dòng)點(diǎn).(b-2)2+|a-6|+c-6=0
(1)求點(diǎn)B、M的坐標(biāo);
(2)當(dāng)P點(diǎn)在線段OM上運(yùn)動(dòng)時(shí),試問(wèn)是否存在一個(gè)點(diǎn)P使S△PAB=13,若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)不論點(diǎn)P點(diǎn)運(yùn)動(dòng)到直線OM上的任何位置(不包括點(diǎn)O,M),∠PAM、∠APB、∠PBO三者之間是否都存在某種固定的數(shù)量關(guān)系,如果有,請(qǐng)寫(xiě)出來(lái)并請(qǐng)選擇其中一種結(jié)論進(jìn)行證明;如果沒(méi)有,請(qǐng)說(shuō)明理由.發(fā)布:2025/6/5 18:0:1組卷:35引用:3難度:0.1 -
3.在△ABC中,∠BAC=90°,
,D為BC上任意一點(diǎn),E為AC上任意一點(diǎn).AB=AC=22
(1)如圖1,連接DE,若∠CDE=60°,AC=4AE,求DE的長(zhǎng).
(2)如圖2,若點(diǎn)D為BC中點(diǎn),連接AD,點(diǎn)F為AD上任意一點(diǎn),連接EF并延長(zhǎng)交AB于點(diǎn)M,將線段EF繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到線段EG,連接AG.點(diǎn)N在AC上,∠AGN=∠AEG且,求證:GN=MF.AM+AF=2AE
(3)如圖3,點(diǎn)D為BC中點(diǎn),連接AD,點(diǎn)F為AD的中點(diǎn),連接EF、BF,將線段EF繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到線段EG,連接AG,H為直線AB上一動(dòng)點(diǎn),連接FH,將△BFH沿FH翻折至△ABC所在平面內(nèi),得到△B′FH,連接B′G,直接寫(xiě)出線段B′G的長(zhǎng)度的最大值.發(fā)布:2025/6/5 18:0:1組卷:415引用:2難度:0.1