已知函數(shù)f(x)=x2+aln(1-x),a∈R.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求證:f(x1)-ax2>-a.
【答案】(1)當(dāng)時(shí),函數(shù)f(x)在(-∞,1)上單調(diào)遞減,
當(dāng)a≤0時(shí),函數(shù)f(x)在上單調(diào)遞減,在上單調(diào)遞增,
當(dāng)時(shí),函數(shù)f(x)在上單調(diào)遞減,
在上單調(diào)遞增;在上單調(diào)遞減;
(2)證明見(jiàn)解析.
a
≥
1
2
當(dāng)a≤0時(shí),函數(shù)f(x)在
(
-
∞
,
1
-
1
-
2
a
2
)
(
1
-
1
-
2
a
2
,
1
)
當(dāng)
0
<
a
<
1
2
(
-
∞
,
1
-
1
-
2
a
2
)
在
(
1
-
1
-
2
a
2
,
1
+
1
-
2
a
2
)
(
1
+
1
-
2
a
2
,
1
)
(2)證明見(jiàn)解析.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/3 8:0:9組卷:119引用:4難度:0.3
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:236引用:3難度:0.8 -
2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x?f′(x)<0的解集為( )
發(fā)布:2024/12/29 13:0:1組卷:265引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:142引用:2難度:0.2