如圖1,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)交x軸于A(-1,0),B(4,0)兩點,交y軸于C(0,-3),點G為拋物線的頂點,連接AC、BC.
(1)求拋物線的解析式;
(2)如圖1,若點D為線段BC下方拋物線上一點,過點D作DE⊥x軸于點E,再過點E作EF⊥BC于點F,請求出DE+53EF的最大值;
(3)如圖2,過點B作BM⊥AC于點M,將拋物線y先向右平移32單位,再向下平移516個單位得到拋物線y',點G的對應點為點G',點Q為第四象限內(nèi)原拋物線y的對稱軸上的一點,若以點Q、M、G'為頂點的三角形是以MG'為腰的等腰三角形,請直接寫出點Q的坐標,并任選一個你喜歡的Q點坐標書寫求解過程.

5
3
3
2
5
16
【考點】二次函數(shù)綜合題.
【答案】(1)y=-x-3;(2);(3)(,)或(,)或(,)或(,)或(,-3).
3
4
x
2
9
4
361
48
3
2
-
3
+
82
2
3
2
-
3
-
82
2
3
2
-
10
+
89
2
3
2
-
10
-
89
2
3
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:104引用:1難度:0.2
相似題
-
1.已知:拋物線y=a(x+3)(x-2)交x軸于點A和點C,與y軸交于點B,且
.tan∠BAC=43
(1)求拋物線解析式;
(2)點P是第四象限拋物線上一點,連接AP交y軸于點F,若點P的橫坐標為t,△ABF的面積為s,求s與t的關系式;
(3)在(2)的條件下,,延長AF、BC交于點G,點H在線段AF上,過點H作HE⊥BC于點E,EH的延長線交拋物線于點D,點M在直線AF下方的第四象限內(nèi),連接MH、ME、MG,∠HMG+∠OBC=90°-∠NAC,點N在AG的延長線上,連接MN并延長交x軸于點K,AK=MH,當△MHE的面積為9,點N是MK的中點時,求點D的橫坐標.s=152?
發(fā)布:2025/5/22 13:0:1組卷:481引用:3難度:0.1 -
2.如圖,已知二次函數(shù)y=-x2+2x+3的圖象交x軸分別于A,D兩點,交y軸于B點,頂點為C.
(1)求拋物線的對稱軸;
(2)求tan∠BAC;
(3)在y軸上是否存在一點P,使得以P,B,D三點為頂點的三角形與△ABC相似?如果存在,請求出點P的坐標;如果不存在,請說明理由.發(fā)布:2025/5/22 13:0:1組卷:607引用:7難度:0.3 -
3.定義:如果在給定的自變量取值范圍內(nèi),函數(shù)既有最大值,又有最小值,則稱該函數(shù)在此范圍內(nèi)有界,函數(shù)的最大值與最小值的差叫做該函數(shù)在此范圍內(nèi)的界值.
(1)當-2≤x≤1時,下列函數(shù)有界的是 (只要填序號);
①y=2x-1;②y=-;③y=-x2+2x+3.2x
(2)當m≤x≤m+2時,一次函數(shù)y=(k+1)x-2的界值不大于2,求k的取值范圍;
(3)當a≤x≤a+2時,二次函數(shù)y=x2+2ax-3的界值為,求a的值.94發(fā)布:2025/5/22 13:0:1組卷:1540引用:3難度:0.3