在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=a(x+1)(x-3)交x軸于A、B兩點(diǎn),交y軸于C,連接BC,tan∠OBC=1.
(1)如圖1,求a的值;
(2)如圖2,點(diǎn)E在第一象限的拋物線上,連接CE、BE,設(shè)點(diǎn)E的橫坐標(biāo)為t,△BCE的面積為S,求S與t之間的函數(shù)關(guān)系式(不用寫出t的取值范圍);
(3)如圖3,在(2)的條件下,連接AE交OC于F,點(diǎn)H在BC的延長線上,連接HF、HE,HE交y軸于D,若∠EDF+∠EHF=90°,CH=2t,求HF的長.
?
2
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)a=-1;
(2)S=-t2+;
(3)5.
(2)S=-
3
2
9
2
(3)5.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/1 8:0:8組卷:168引用:3難度:0.1
相似題
-
1.如圖,在平面直角坐標(biāo)系中,已知A、B、C三點(diǎn)的坐標(biāo)分別為A(-2,0),B(6,0),C(0,3).
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線的解析式;
(2)過C點(diǎn)作CD平行于x軸交拋物線于點(diǎn)D,寫出D點(diǎn)的坐標(biāo),并求AD、BC的交點(diǎn)E的坐標(biāo);
(3)若拋物線的頂點(diǎn)為P,連接PC、PD,判斷四邊形CEDP的形狀,并說明理由.發(fā)布:2025/5/29 4:0:1組卷:252引用:21難度:0.1 -
2.如圖,AB、CD是半徑為1的⊙P兩條直徑,且∠CPB=120°,⊙M與PC、PB及弧CQB都相切,O、
Q分別為PB、弧CQB上的切點(diǎn).
(1)試求⊙M的半徑r;
(2)以AB為x軸,OM為y軸(分別以O(shè)B、OM為正方向)建立直角坐標(biāo)系,
①設(shè)直線y=kx+m過點(diǎn)M、Q,求k,m;?????????????????
②設(shè)函數(shù)y=x2+bx+c的圖象經(jīng)過點(diǎn)Q、O,求此函數(shù)解析式;
③當(dāng)y=x2+bx+c<0時(shí),求x的取值范圍;
④若直線y=kx+m與拋物線y=x2+bx+c的另一個(gè)交點(diǎn)為E,求線段EQ的長度.發(fā)布:2025/5/29 5:0:1組卷:72引用:2難度:0.1 -
3.如圖,ABCD為平行四邊形,以BC為直徑的⊙O經(jīng)過點(diǎn)A,∠D=60°,BC=2,一動(dòng)點(diǎn)P在AD上移動(dòng),過點(diǎn)P作直線AB的垂線,分別交直線AB、CD于E、F,設(shè)點(diǎn)O到EF的距離為t,若B、P、F三點(diǎn)能構(gòu)成三角形,設(shè)此時(shí)△BPF的面積為S.
(1)計(jì)算平行四邊形ABCD的面積;
(2)求S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)△BPF的面積存在最大值嗎?若存在,請(qǐng)求出這個(gè)最大值,若不存在,請(qǐng)說明理由.發(fā)布:2025/5/29 5:30:2組卷:73引用:1難度:0.1