我們約定[a,-b,c]為二次函數(shù)y=ax2+bx+c(a≠0)的“相關(guān)數(shù)”.
特例感知
“相關(guān)數(shù)”為[1,4,3]的二次函數(shù)的解析式為y1=x2-4x+3;
“相關(guān)數(shù)”為[2,5,3]的二次函數(shù)的解析式為y2=2x2-5x+3;
“相關(guān)數(shù)”為[3,6,3]的二次函數(shù)的解析式為y3=3x2-6x+3;
(1)下列結(jié)論正確的是 ①②③①②③(填序號(hào)).
①拋物線y1,y2,y3都經(jīng)過(guò)點(diǎn)(0,3);
②拋物線y1,y2,y3與直線y=3都有兩個(gè)交點(diǎn);
③拋物線y1,y2,y3有兩個(gè)交點(diǎn).
形成概念
把滿足“相關(guān)數(shù)”為[n,n+3,3](n為正整數(shù))的拋物線yn稱為“一簇拋物線”,分別記為y1,y2,y3,…,yn.拋物線yn與x軸的交點(diǎn)為An,Bn.
探究問(wèn)題
(2)①“一簇拋物線”y1,y2,y3,…,yn都經(jīng)過(guò)兩個(gè)定點(diǎn),這兩個(gè)定點(diǎn)的坐標(biāo)分別為 (0,3),(1,0)(0,3),(1,0).
②拋物線yn的頂點(diǎn)為Cn,是否存在正整數(shù)n,使△AnBnCn是直角三角形?若存在,請(qǐng)求出n的值;若不存在,請(qǐng)說(shuō)明理由.
③當(dāng)n≥4時(shí),拋物線yn與x軸的左交點(diǎn)An,與直線y=3的一個(gè)交點(diǎn)為Dn,且點(diǎn)Dn不在y軸上.判斷AnAn+1和DnDn+1是否相等,并說(shuō)明理由.
【考點(diǎn)】二次函數(shù)綜合題.
【答案】①②③;(0,3),(1,0)
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:359引用:5難度:0.1
相似題
-
1.在平面直角坐標(biāo)系中,拋物線y=ax2+bx+1(a≠0)經(jīng)過(guò)點(diǎn)A(2,1),頂點(diǎn)為點(diǎn)B.
(1)用含a的代數(shù)式表示b;
(2)若a>0,設(shè)拋物線y=ax2+bx+1(a≠0)的對(duì)稱軸為直線l,過(guò)A作AM⊥l于點(diǎn)M,且MB=2AM,當(dāng)m-2≤x≤m時(shí),拋物線的最高點(diǎn)的縱坐標(biāo)為17,求m的值;
(3)若點(diǎn)C的坐標(biāo)為(-5,-1),將點(diǎn)C向右平移9個(gè)單位長(zhǎng)度得到點(diǎn)D,當(dāng)拋物線y=ax2+bx+1(a≠0)與線段CD有兩個(gè)交點(diǎn)時(shí),直接寫出a的取值范圍.發(fā)布:2025/5/25 3:30:2組卷:176引用:2難度:0.2 -
2.綜合與探究.如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3與x軸交于A(-1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C,過(guò)點(diǎn)C作AB的平行線,交拋物線于點(diǎn)D,P為拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作直線CD的垂線,垂足為E,與x軸交于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線的函數(shù)表達(dá)式及點(diǎn)D的坐標(biāo);
(2)當(dāng)m<-1,且時(shí),探究四邊形ABDE能否成為平行四邊形,并說(shuō)明理由;EFPF=23
(3)當(dāng)m>0時(shí),連接AC,PC,拋物線上是否存在點(diǎn)P,使∠PCE與∠BAC互余?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.發(fā)布:2025/5/25 3:30:2組卷:134引用:1難度:0.2 -
3.已知拋物線y=ax2+x+c經(jīng)過(guò)A(-1,0)、B(2,0)、C三點(diǎn),直線y=mx+
交拋物線于A、D兩點(diǎn),交y軸于點(diǎn)G.12
(1)求拋物線的解析式;
(2)點(diǎn)P是直線AD上方拋物線上的一點(diǎn),作PF⊥x軸,垂足為F,交AD于點(diǎn)N,且點(diǎn)N將線段PF分為1:2的兩部分.
①求點(diǎn)P的坐標(biāo);
②過(guò)點(diǎn)P作PM⊥AD于點(diǎn)M,若直線l到直線AD的距離是PM的2倍,請(qǐng)直接寫出直線l的解析式.發(fā)布:2025/5/25 4:0:1組卷:494引用:4難度:0.4