如圖1是一個(gè)長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個(gè)“回形”正方形(如圖2).
?
(1)圖2中的陰影部分的面積為 a2-2ab+b2a2-2ab+b2;
(2)觀察圖2請(qǐng)你寫出(a+b)2、(a-b)2、ab之間的等量關(guān)系是 (a+b)2-(a-b)2=4ab(a+b)2-(a-b)2=4ab;
(3)根據(jù)(2)中的結(jié)論,若m+n=5,mn=4,則m-n=±3±3;
(4)實(shí)際上通過計(jì)算圖形的面積可以探求相應(yīng)的等式.根據(jù)圖3,寫出一個(gè)因式分解的等式 3a2+4ab+b2=(3a+b)(a+b)3a2+4ab+b2=(3a+b)(a+b).
【答案】a2-2ab+b2;(a+b)2-(a-b)2=4ab;±3;3a2+4ab+b2=(3a+b)(a+b)
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/11 8:0:9組卷:90引用:1難度:0.5
相似題
-
1.閱讀材料:利用公式法,可以將一些形如ax2+bx+c(a≠0)的多項(xiàng)式變形為a(x+m)2+n的形式,我們把這樣的變形方法叫做多項(xiàng)式ax2+bx+c(a≠0)的配方法,運(yùn)用多項(xiàng)式的配方法及平方差公式能對(duì)一些多項(xiàng)式進(jìn)行因式分解.
例如:.x2+4x-5=x2+4x+(42)2-(42)2-5=(x+42)2-4-5=(x+2)2-9=(x+2+3)(x+2-3)=(x+5)(x-1)
根據(jù)以上材料,解答下列問題.
(1)分解因式:x2+2x-3;
(2)求多項(xiàng)式x2+6x-9的最小值;
(3)已知a,b,c是△ABC的三邊長,且滿足a2+b2+c2+50=6a+8b+10c,求△ABC的周長.發(fā)布:2025/6/8 15:30:1組卷:2750引用:10難度:0.3 -
2.已知a+2b=2,ab=3,則2a2b+4ab2=.
發(fā)布:2025/6/8 17:0:2組卷:228引用:4難度:0.7 -
3.數(shù)形結(jié)合思想是根據(jù)數(shù)與形之間的對(duì)應(yīng)關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學(xué)問題的思想.我們常利用數(shù)形結(jié)合思想,借助形的幾何直觀性來闡明數(shù)之間某種關(guān)系,如:探索整式乘法的一些法則和公式.
(1)探究一:
將圖1的陰影部分沿虛線剪開后,拼成圖2的形狀,拼圖前后圖形的面積不變,因此可得一個(gè)多項(xiàng)式的分解因式 .
(2)探究二:類似地,我們可以借助一個(gè)棱長為a的大正方體進(jìn)行以下探索:
在大正方體一角截去一個(gè)棱長為b(b<a)的小正方體,如圖3所示,則得到的幾何體的體積為 ;
(3)將圖3中的幾何體分割成三個(gè)長方體①、②、③,如圖4、圖5所示,∵BC=a,AB=a-b,CF=b,∴長方體①的體積為ab(a-b).類似地,長方體②的體積為 ,長方體③的體積為 ;(結(jié)果不需要化簡(jiǎn))
(4)用不同的方法表示圖3中幾何體的體積,可以得到的恒等式(將一個(gè)多項(xiàng)式因式分解)為 .
(5)問題應(yīng)用:利用上面的結(jié)論,解決問題:已知a-b=6,ab=2,求a3-b3的值.
(6)類比以上探究,嘗試因式分解:a3+b3=.發(fā)布:2025/6/8 15:0:1組卷:433引用:4難度:0.6