當(dāng)前位置:
2023-2024學(xué)年江蘇省無錫市惠山區(qū)錫山高級中學(xué)實(shí)驗(yàn)學(xué)校八年級(上)第一次月考數(shù)學(xué)試卷>
試題詳情
我們規(guī)定:有兩組邊相等,且它們所夾的角互補(bǔ)的兩個(gè)三角形叫兄弟三角形.如圖,OA=OB,OC=OD,∠AOB=∠COD=90°,回答下列問題:
(1)求證:△OAC和△OBD是兄弟三角形.
(2)“取BD的中點(diǎn)P,連接OP,試說明AC=2OP.”聰明的小王同學(xué)根據(jù)所要求的結(jié)論,想起了老師上課講的“中線倍長”的輔助線構(gòu)造方法,解決了這個(gè)問題,按照這個(gè)思路回答下列問題.
①請?jiān)趫D中通過作輔助線構(gòu)造△BPE≌△DPO,并證明BE=OD;
②求證:AC=2OP.
【考點(diǎn)】三角形綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/1 8:0:9組卷:362引用:4難度:0.4
相似題
-
1.【問題探究】在學(xué)習(xí)三角形中線時(shí),我們遇到過這樣的問題:如圖①,在△ABC中,點(diǎn)D為BC邊上的中點(diǎn),AB=4,AC=6,求線段AD長的取值范圍.我們采用的方法是延長線段AD到點(diǎn)E,使得AD=DE,連結(jié)CE,可證△ABD≌△ECD,可得CE=AB=4,根據(jù)三角形三邊關(guān)系可求AD的范圍,我們將這樣的方法稱為“三角形倍長中線”.則AD的范圍是:.
【拓展應(yīng)用】
(1)如圖②,在△ABC中,BC=2BD,AD=3,AC=2,∠BAD=90°,求AB的長.10
(2)如圖③,在△ABC中,D為BC邊的中點(diǎn),分別以AB、AC為直角邊向外作直角三角形,且滿足∠ABE=∠ACF=30°,連結(jié)EF,若AD=2,則EF=.(直接寫出)3發(fā)布:2025/5/26 8:0:5組卷:411引用:5難度:0.4 -
2.如圖①,在△ABC中,∠ABC=90°,AC=10,BC=6,D點(diǎn)為AC邊的中點(diǎn).點(diǎn)P在邊AB上運(yùn)動(點(diǎn)P不與A、B重合),連結(jié)PD、PC.設(shè)線段AP的長度為x.
(1)求AB的長.
(2)當(dāng)△APD是等腰三角形時(shí),求這個(gè)等腰三角形的腰長.
(3)連結(jié)PD、PC,當(dāng)PD+PC取最小值時(shí),求x的值.
(4)如圖②,取AP的中點(diǎn)為O,以點(diǎn)O為圓心,以線段AP的長為直徑的圓與線段PD有且只有一個(gè)公共點(diǎn)時(shí),直接寫出x的取值范圍.發(fā)布:2025/5/26 6:30:2組卷:176引用:1難度:0.3 -
3.如圖,在△ABC中,AB=AC=2,∠B=40°,點(diǎn)D在線段BC上運(yùn)動(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E.
(1)當(dāng)∠BDA=115°時(shí),∠BAD=°,∠DEC=°;
(2)當(dāng)DC等于多少時(shí),△ABD與△DCE全等?請說明理由;
(3)在點(diǎn)D的運(yùn)動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù).若不可以,請說明理由.發(fā)布:2025/5/26 2:30:2組卷:976引用:8難度:0.3