如圖,在△ABC中,BC=60,高AD=30,正方形EFGH一邊在BC上,點(diǎn)E,F(xiàn)分別在AB,AC上,AD交EF于點(diǎn)N,則正方形EFGH的面積為( ?。?/h1>
【考點(diǎn)】正方形的性質(zhì).
【答案】B
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/29 8:0:10組卷:94引用:1難度:0.5
相似題
-
1.如圖,正方形ABCD的對(duì)角線AC與BD相交于O點(diǎn),在BD上截取BE=BC,連接CE,點(diǎn)P是CE上任意一點(diǎn),PM⊥BD于M,PN⊥BC于N,若正方形ABCD的邊長(zhǎng)為1,則PM+PN=( )
發(fā)布:2025/5/29 0:0:1組卷:950引用:2難度:0.7 -
2.正方形ABCD中,AC=2
,則正方形的面積為2發(fā)布:2025/5/29 2:30:2組卷:19引用:1難度:0.5 -
3.正方形ABCD中,點(diǎn)O是對(duì)角線AC的中點(diǎn),P是對(duì)角線AC上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PF⊥CD于點(diǎn)F.如圖1,當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),顯然有DF=CF.
(1)如圖2,若點(diǎn)P在線段AO上(不與點(diǎn)A、O重合),PE⊥PB且PE交CD于點(diǎn)E.
①求證:DF=EF;
②寫(xiě)出線段PC、PA、CE之間的一個(gè)等量關(guān)系,并證明你的結(jié)論;
(2)若點(diǎn)P在線段OC上(不與點(diǎn)O、C重合),PE⊥PB且PE交直線CD于點(diǎn)E.請(qǐng)完成圖3并判斷(1)中的結(jié)論①、②是否分別成立?若不成立,寫(xiě)出相應(yīng)的結(jié)論.(所寫(xiě)結(jié)論均不必證明)發(fā)布:2025/5/29 0:0:1組卷:3802引用:45難度:0.1