如圖1,在平面直角坐標系中,拋物線y=ax2+bx+23(a≠0)經(jīng)過x軸上的點A(-2,0)和點B(點A在點B左側(cè))及y軸上的點C,經(jīng)過B、C兩點的直線為y=-32x+n,頂點為D,對稱軸與x軸交于點Q.
(1)求拋物線的表達式;
(2)連接AC,BC.若點P為直線BC上方拋物線上一動點,過點P作PE∥y軸交BC于點E,作PF⊥BC于點F,過點B作BG∥AC交y軸于點G.點H,K分別在對稱軸和y軸上運動,連接PH,HK.
①求△PEF的周長為最大值時點P的坐標;
②在①的條件下,求PH+HK+32KG的最小值及點H的坐標.

3
3
2
3
2
【考點】二次函數(shù)綜合題.
【答案】(1)y=-x2+x+2;
(2)①P(2,2);②PH+KH+KG的最小值是10.
3
4
3
2
3
(2)①P(2,2
3
3
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/6/20 13:0:29組卷:158引用:1難度:0.3
相似題
-
1.綜合與探究
如圖,拋物線y=x2-x-3與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C.直線l與拋物線交于A,D兩點,與y軸交于點E,點D的坐標為(4,-3).14
(1)請直接寫出A,B兩點的坐標及直線l的函數(shù)表達式;
(2)若點P是拋物線上的點,點P的橫坐標為m(m≥0),過點P作PM⊥x軸,垂足為M.PM與直線l交于點N,當點N是線段PM的三等分點時,求點P的坐標;
(3)若點Q是y軸上的點,且∠ADQ=45°,求點Q的坐標.發(fā)布:2025/6/20 15:30:2組卷:5038引用:7難度:0.4 -
2.已知拋物線
,頂點為A,且經(jīng)過點y=a(x-12)2-2,點B(-32,2).C(52,2)
(1)求拋物線的解析式;
(2)如圖1,直線AB與x軸相交于點M,y軸相交于點E,拋物線與y軸相交于點F,在直線AB上有一點P,若∠OPM=∠MAF,求△POE的面積;
(3)如圖2,點Q是折線A-B-C上一點,過點Q作QN∥y軸,過點E作EN∥x軸,直線QN與直線EN相交于點N,連接QE,將△QEN沿QE翻折得到△QEN1,若點N1落在x軸上,請直接寫出Q點的坐標.發(fā)布:2025/6/20 16:0:1組卷:8039引用:12難度:0.2 -
3.如圖,直線y=-x+3與x軸、y軸分別交于B、C兩點,拋物線y=-x2+bx+c經(jīng)過點B、C,與x軸另一交點為A,頂點為D.
(1)求拋物線的解析式;
(2)在x軸上找一點E,使EC+ED的值最小,求EC+ED的最小值;
(3)在拋物線的對稱軸上是否存在一點P,使得∠APB=∠OCB?若存在,求出P點坐標;若不存在,請說明理由.發(fā)布:2025/6/20 17:0:9組卷:897引用:10難度:0.3