如圖,拋物線與x軸交于A、B兩點,與y軸交于點C,且OA=2,OB=4,OC=8,拋物線的對稱軸與直線BC交于點M,與x軸交于點N.

(1)求拋物線的解析式;
(2)若點P是對稱軸上的一個動點,是否存在以P、C、M為頂點的三角形與△MNB相似?若存在,求出點P的坐標,若不存在,請說明理由.
(3)點Q是拋物線上位于x軸上方的一點,點R在x軸上,是否存在以點Q為直角頂點的等腰Rt△CQR?若存在,求出點Q的坐標,若不存在,請說明理由.
【考點】二次函數(shù)綜合題.
【答案】(1)y=-x2+2x+8;
(2)(1,8)或;
(3)或.
(2)(1,8)或
(
1
,
17
2
)
(3)
(
1
+
33
2
,
1
+
33
2
)
(
3
-
41
2
,
41
-
3
2
)
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/21 8:0:9組卷:115引用:1難度:0.4
相似題
-
1.已知函數(shù)y=
,記該函數(shù)圖象為G.-12x2+12x+m(x<m)x2-mx+m(x≥m)
(1)當m=2時,
①已知M(4,n)在該函數(shù)圖象上,求n的值;
②當0≤x≤2時,求函數(shù)G的最大值.
(2)當m>0時,作直線x=m與x軸交于點P,與函數(shù)G交于點Q,若∠POQ=45°時,求m的值;12
(3)當m≤3時,設(shè)圖象與x軸交于點A,與y軸交于點B,過點B作BC⊥BA交直線x=m于點C,設(shè)點A的橫坐標為a,C點的縱坐標為c,若a=-3c,求m的值.發(fā)布:2025/6/8 14:30:2組卷:3081引用:7難度:0.1 -
2.我們把一個半圓與拋物線的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.如圖所示,點A、B、C、D分別是“蛋圓”與坐標軸的交點,已知點D的坐標為(0,-3),AB為半圓的直徑,半圓圓心M的坐標為(1,0),半圓半徑為2.
(1)請你求出“蛋圓”拋物線部分的解析式,并寫出自變量的取值范圍;
(2)你能求出經(jīng)過點C的“蛋圓”切線的解析式嗎?試試看;
(3)開動腦筋想一想,相信你能求出經(jīng)過點D的“蛋圓”切線的解析式.發(fā)布:2025/6/8 14:30:2組卷:237引用:45難度:0.1 -
3.如圖,一條拋物線與x軸相交于A、B兩點(點A在點B的左側(cè)),其頂點P在線段MN上移動.若點M、N的坐標分別為(-1,-2)、(1,-2),點B的橫坐標的最大值為3,則點A的橫坐標的最小值為( ?。?/h2>
發(fā)布:2025/6/8 8:0:6組卷:4103引用:19難度:0.7
相關(guān)試卷