某游樂園有一個(gè)直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達(dá)到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向?yàn)閤軸,噴水池中心為原點(diǎn)建立直角坐標(biāo)系.

(1)求水柱所在拋物線(第二象限部分)的函數(shù)表達(dá)式;
(2)主師傅在噴水池內(nèi)維修設(shè)備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時(shí)必須在離水池中心多少米以內(nèi)?
(3)經(jīng)檢修評(píng)估,游樂園決定對(duì)噴水設(shè)施做如下設(shè)計(jì)改進(jìn):在噴出水柱的形狀不變的前提下,把水池的直徑擴(kuò)大到24米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請(qǐng)?zhí)骄繑U(kuò)建改造后噴水池水柱的最大高度.
【考點(diǎn)】二次函數(shù)的應(yīng)用.
【答案】(1)y=-(x+3)2+5(-8<x<0);
(2)7;
(3).
1
5
(2)7;
(3)
80
9
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/2 16:30:2組卷:2049引用:8難度:0.3
相似題
-
1.如圖,有一座拋物線形拱橋,橋下面在正常水位時(shí)AB寬20米,水位上升3米就達(dá)到警戒線CD,這時(shí)水面寬度為10米.若洪水到來時(shí),水位以每小時(shí)0.2米的速度上升,則再持續(xù)小時(shí)水位才能到拱橋頂.
發(fā)布:2025/6/19 21:30:2組卷:1132引用:6難度:0.5 -
2.如圖1,為美化校園環(huán)境,某校計(jì)劃在一塊長(zhǎng)為60米,寬為40米的長(zhǎng)方形空地上修建一個(gè)長(zhǎng)方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設(shè)通道寬為a米.
(1)用含a的式子表示花圃的面積.
(2)如果通道所占面積是整個(gè)長(zhǎng)方形空地面積的,求出此時(shí)通道的寬.38
(3)已知某園林公司修建通道、花圃的造價(jià)y1(元)、y2(元)與修建面積x(m2)之間的函數(shù)關(guān)系如圖2所示,如果學(xué)校決定由該公司承建此項(xiàng)目,并要求修建的通道的寬度不少于2米且不超過10米,那么通道寬為多少時(shí),修建的通道和花圃的總造價(jià)最低,最低總造價(jià)為多少元?發(fā)布:2025/6/19 22:30:1組卷:2096引用:61難度:0.5 -
3.經(jīng)統(tǒng)計(jì)分析,某市跨河大橋上的車流速度v(千米/小時(shí))是車流密度x(輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到220輛/千米時(shí),造成堵塞,此時(shí)車流速度為0千米/小時(shí);當(dāng)車流密度不超過20輛/千米時(shí),車流速度為80千米/小時(shí),研究表明:當(dāng)20≤x≤220時(shí),車流速度v是車流密度x的一次函數(shù).
(1)求大橋上車流密度為100輛/千米時(shí)的車流速度;
(2)在交通高峰時(shí)段,為使大橋上的車流速度大于40千米/小時(shí)且小于60千米/小時(shí),應(yīng)控制大橋上的車流密度在什么范圍內(nèi)?
(3)車流量(輛/小時(shí))是單位時(shí)間內(nèi)通過橋上某觀測(cè)點(diǎn)的車輛數(shù),即:車流量=車流速度×車流密度.求大橋上車流量y的最大值.發(fā)布:2025/6/19 22:0:1組卷:1720引用:58難度:0.3