如圖,拋物線y=-x2+2x+c與x軸正半軸,y軸正半軸分別交于點(diǎn)A,B,且OA=OB,點(diǎn)G為拋物線的頂點(diǎn).
(1)求拋物線的解析式及點(diǎn)G的坐標(biāo);
(2)點(diǎn)M,N為拋物線上兩點(diǎn)(點(diǎn)M在點(diǎn)N的左側(cè)),且到對稱軸的距離分別為3個(gè)單位長度和5個(gè)單位長度,點(diǎn)Q為拋物線上點(diǎn)M,N之間(含點(diǎn)M,N)的一個(gè)動(dòng)點(diǎn),求點(diǎn)Q的縱坐標(biāo)yQ的取值范圍.
【答案】(1)y=-x2+2x+3,(1,4);(2)-21≤yQ≤-5或-21≤yQ≤4.
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/22 4:0:2組卷:2754引用:26難度:0.5
相似題
-
1.(1)已知二次函數(shù)圖象的頂點(diǎn)是(-1,2),且過點(diǎn)(0,
),求二次函數(shù)的表達(dá)式;32
(2)已知二次函數(shù)y=-x2+bx+c的圖象如圖所示,求此二次函數(shù)的解析式.發(fā)布:2025/6/25 4:0:1組卷:71引用:3難度:0.6 -
2.如圖,直線y=-x+2過x軸上的點(diǎn)A(2,0),且與拋物線y=ax2交于B,C兩點(diǎn),點(diǎn)B坐標(biāo)為(1,1).
(1)求拋物線的函數(shù)表達(dá)式;
(2)連結(jié)OC,求出△AOC的面積.
(3)當(dāng)-x+2>ax2時(shí),請觀察圖象直接寫出x的取值范圍.發(fā)布:2025/6/25 4:0:1組卷:1538引用:16難度:0.6 -
3.在平面直角坐標(biāo)系中,函數(shù)y=(x-a)2-a+1(a為常數(shù))的圖象與y軸交于點(diǎn)A.
(1)求點(diǎn)A坐標(biāo)(用含a的代數(shù)式表示);
(2)當(dāng)此函數(shù)圖象經(jīng)過點(diǎn)(-2,3)時(shí),求此函數(shù)表達(dá)式;
(3)當(dāng)x≤0時(shí),若函數(shù)y=(x-a)2-a+1(a為常數(shù))的圖象的最低點(diǎn)到直線y=a的距離為2,求a的值.發(fā)布:2025/6/25 5:0:1組卷:46引用:1難度:0.6