已知拋物線y=-x2+bx+c(b,c為常數)經過點(-2,5)和(-6,-3).
(1)求該拋物線的函數表達式;
(2)將拋物線y=-x2+bx+c(b,c為常數)向右平移m(m>0)個單位長度得到一個新的拋物線,若新的拋物線的頂點關于原點O對稱的點也在拋物線y=-x2+bx+c(b,c為常數)上,求m的值.
【答案】(1)y=-x2-6x-3;
(2),.
(2)
m
1
=
6
+
2
3
m
2
=
6
-
2
3
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2025/5/21 14:0:2組卷:147引用:2難度:0.5
相似題
-
1.數形結合是解決數學問題的重要方法.小明同學學習二次函數后,對函數y=-(|x|-1)2進行了探究.在經歷列表、描點、連線步驟后,得到如圖的函數圖象.請根據函數圖象,回答下列問題:
【觀察探究】:
方程-(|x|-1)2=-1的解為:;
【問題解決】:
若方程-(|x|-1)2=a有四個實數根,分別為x1、x2、x3、x4.
①a的取值范圍是 ;
②計算x1+x2+x3+x4=;
【拓展延伸】:
①將函數y=-(|x|-1)2的圖象經過怎樣的平移可得到函數的圖象?畫出平移后的圖象并寫出平移過程;y1=-(|x-2|-1)2+3
②觀察平移后的圖象,當2≤y1≤3時,直接寫出自變量x的取值范圍 .發(fā)布:2025/5/21 21:30:1組卷:1470引用:6難度:0.4 -
2.如圖,在平面直角坐標系中,拋物線
經過平移后得到拋物線y2,則拋物線y2的表達式為( ?。?/h2>y1=-2x2+bx+c發(fā)布:2025/5/21 14:0:2組卷:326引用:3難度:0.8 -
3.將二次函數y=2(x+2)2-3的圖象向左平移1個單位,再向上平移1個單位,得到的新圖象函數的表達式為 .
發(fā)布:2025/5/21 12:30:1組卷:461引用:6難度:0.7