當(dāng)前位置:
2020-2021學(xué)年浙江省杭州市江干區(qū)文海實(shí)驗(yàn)學(xué)校中學(xué)七年級(jí)(下)期中數(shù)學(xué)試卷>
試題詳情
閱讀材料:若m2-2mn+2n2-8n+16=0,求m,n的值.
解:∵m2-2mn+2n2-8n+16=0,
∴(m2-2mn+n2)+(n2-8n+16)=0.
∴(m-n)2+(n-4)2=0,
∵(m-n)2≥0,(n-4)2≥0,
∴(m-n)2=0,(n-4)2=0,
∴n=4,m=4.
根據(jù)你的觀察,探究下面的問(wèn)題:
(1)比較大?。簒2+1 ≥≥2x;x2-6x ≥≥-9;
(2)已知:x2+2xy+2y2+2y+1=0,求2x+3y的值;
(3)已知:a-c=6,ac+b2-8b+25=0,求a+2b+3c的值.
【考點(diǎn)】配方法的應(yīng)用;非負(fù)數(shù)的性質(zhì):偶次方.
【答案】≥;≥
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:301引用:2難度:0.6
相似題
-
1.已知x2+y2-4x+6y+13=0,則x2-6xy+9y2=.
發(fā)布:2025/6/8 3:0:2組卷:283引用:5難度:0.8 -
2.請(qǐng)閱讀下列材料:
我們可以通過(guò)以下方法求代數(shù)式的x2+2x-3最小值.
x2+2x-3=x2+2x?1+12-12-3=(x+1)2-4∵(x+1)2≥0∴當(dāng)x=-1時(shí),x2+2x-3有最小值-4.
請(qǐng)根據(jù)上述方法,解答下列問(wèn)題:
(1),則a=,b=;x2+23x+5=x2+2×3x+(3)2+2=(x+a)2+b
(2)若代數(shù)式x2-2kx+7的最小值為3,求k的值.發(fā)布:2025/6/8 6:30:2組卷:26引用:1難度:0.6 -
3.已知x2+2x+y2-4y+5=0,求代數(shù)式y(tǒng)x的值.
發(fā)布:2025/6/8 5:0:1組卷:174引用:3難度:0.3