在△ABC中,∠BAC=90°,∠ABC=30°,點D在斜邊BC上,且滿足BD=13BC,將線段DB繞點D順時針旋轉(zhuǎn)至DE,記旋轉(zhuǎn)角為α,連接CE,BE,以CE為斜邊在其右側(cè)作直角三角形CEF,且∠CFE=90°,∠ECF=60°,連接AF.
(1)如圖1,當α=180°時,請直接寫出線段BE與線段AF的數(shù)量關(guān)系 BE=2AFBE=2AF;
(2)當0°<α<180°時,
①如圖2,(1)中線段BE與線段AF的數(shù)量關(guān)系是否仍然成立?請說明理由;
②當B,E,F(xiàn)三點共線時,如圖3,連接AE,若AE=3,請直接寫出cos∠EFA的值及線段BC的值.

1
3
【考點】幾何變換綜合題.
【答案】BE=2AF
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:1014引用:5難度:0.4
相似題
-
1.如圖,在△ABC中,∠ABC=90°,AB=4,BC=3.點P從點A出發(fā),沿折線AB-BC以每秒5個單位長度的速度向點C運動,同時點D從點C出發(fā),沿CA以每秒2個單位長度的速度向點A運動,點P到達點C時,點P、D同時停止運動.當點P不與點A,C重合時,作點P關(guān)于直線AC的對稱點Q,連接PQ交AC于點E,連接DP、DQ.設(shè)點P的運動時間為t秒.
(1)當點P與點B重合時,求t的值;
(2)用含t的代數(shù)式表示線段CE的長;
(3)當△PDQ為等腰直角三角形時,求t的值.發(fā)布:2025/5/25 12:30:1組卷:196引用:4難度:0.3 -
2.如圖1,在△ABC中,∠C=90°,∠ABC=30°,AC=1,D為△ABC內(nèi)部的一動點(不在邊上),連接BD,將線段BD繞點D逆時針旋轉(zhuǎn)60°,使點B到達點F的位置;將線段AB繞點B順時針旋轉(zhuǎn)60°,使點A到達點E的位置,連接AD,CD,AE,AF,BF,EF.
(1)求證:△BDA≌△BFE;
(2)①CD+DF+FE的最小值為 ;
②當CD+DF+FE取得最小值時,求證:AD∥BF.
(3)如圖2,M,N,P分別是DF,AF,AE的中點,連接MP,NP,在點D運動的過程中,請判斷∠MPN的大小是否為定值.若是,求出其度數(shù);若不是,請說明理由.發(fā)布:2025/5/25 8:0:2組卷:2338引用:3難度:0.5 -
3.在△ABC中,∠C=90°,AC=BC=2,將一塊三角板的直角頂點放在斜邊AB的中點P處,將此三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于點D、點E,圖①,②,③是旋轉(zhuǎn)得到的三種圖形.
(1)觀察線段PD和PE之間有怎樣的大小關(guān)系?并以圖②為例,并加以證明;
(2)觀察線段CD、CE和BC之間有怎樣的數(shù)量關(guān)系?并以圖③為例,并加以證明;
(3)△PBE是否能成為等腰三角形?若能,請直接寫出∠PEB的度數(shù);若不能,請說明理由.發(fā)布:2025/5/25 11:0:2組卷:950引用:4難度:0.2