已知:如圖長方體的長、寬、高分別為a,b,c.s1=a2+b2+c2,s2=ab+bc+ca,s3=(a-b)2+(b-c)2+(c-a)2.則稱“s1,s2,s3為長方體的特征數(shù)”.我們發(fā)現(xiàn)長方體的特征數(shù)具有如下關(guān)系:s1-s2=12s3..
(1)請你檢驗說明這個等式的正確性.
(2)若a=2022,b=2023,c=2024,你能很快求出a2+b2+c2-ab-bc-ca的值嗎?
(3)若a-b=23,b-c=23,s1=2.求長方體的特征數(shù)s2的值.
s
1
=
a
2
+
b
2
+
c
2
s
3
=
(
a
-
b
)
2
+
(
b
-
c
)
2
+
(
c
-
a
)
2
s
1
-
s
2
=
1
2
s
3
.
a
-
b
=
2
3
b
-
c
=
2
3
【考點】因式分解的應(yīng)用;認(rèn)識立體圖形.
【答案】(1)見解答;
(2)3;
(3).
(2)3;
(3)
2
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:308引用:1難度:0.4
相似題
-
1.若一個整數(shù)能表示成a2+b2(a、b是整數(shù))的形式,則稱這個數(shù)為“完美數(shù)”,
例如,5是“完美數(shù)”.因為5=22+12.
再如,M=5x2+5y2=x2+y2+4x2+4y2
=x2+y2+4x2+4y2+4xy-4xy
=(x+2y)2+(2x-y)2(x、y是整數(shù)),所以M也是“完美數(shù)”.
(1)請你再寫出一個小于20的“完美數(shù)”;
(2)判斷9x2+1+4y2-12xy(x,y是整數(shù))是否為“完美數(shù)”;并說明原因.發(fā)布:2025/6/8 22:30:1組卷:69引用:1難度:0.7 -
2.如果一個自然數(shù)M能分解成a×A,其中a為一位數(shù),A為兩位數(shù),且a與A的十位數(shù)字的和等于A的個位數(shù)字,則稱數(shù)M為“和數(shù)”,將“和數(shù)”分解成M=a×A的過程,稱為“和分解”,若a與A的十位數(shù)字的差等于A的個位數(shù)字,則稱數(shù)M為“差數(shù)”,將“差數(shù)”分解成M=a×A的過程,稱為“差分解”.
例如:∵245=5×49,5+4=9,∴245為“和數(shù)”,
∵205=5×41,5-4=1,∴205為“差數(shù)”.
又如∵195=3×65=5×39,3+6≠5,5+3≠9,且3-6≠5,5-3≠9,∴195既不是“和數(shù)”也不是“差數(shù)”.
(1)判斷236是“和數(shù)”嗎?115是“差數(shù)”嗎?并說明理由;
(2)將一個“和數(shù)”M進行“和分解”,即,(1≤m≤8,1≤a≤8,2≤b≤9,m,a,b都為整數(shù)),將一個“差數(shù)”N進行“差分解”,即M=m×ab,(2≤n≤9,1≤a≤8,1≤c≤8,n,a,c都為整數(shù)),記P(M)=m+a+b,P(N)=n+a+c,若N=n×ac能被3整除,求出所有滿足題意的M的值.P(M)P(N)發(fā)布:2025/6/9 1:30:1組卷:86引用:2難度:0.4 -
3.若實數(shù)x滿足x2-x-1=0,則代數(shù)式x3-2x2+2023的值為 .
發(fā)布:2025/6/9 3:30:1組卷:527引用:6難度:0.6