小曼和他的同學(xué)組成了“愛琢磨”學(xué)習(xí)小組,有一次,他們碰到這樣一道題:“已知正方形ABCD,點(diǎn)E、F、G、H分別在邊AB、BC、CD、DA上,若EG⊥FH,則EG=FH.”為了解決這個(gè)問題,經(jīng)過思考,大家給出了以下兩個(gè)方案:
方案一:過點(diǎn)A作AM∥HF交BC于點(diǎn)M,過點(diǎn)B作BN∥EG交CD于點(diǎn)N;
方案二:過點(diǎn)A作AM∥HF交BC于點(diǎn)M,過點(diǎn)A作AN∥EG交CD于點(diǎn)N.…
(1)對(duì)小曼遇到的問題,請(qǐng)?jiān)诩?、乙兩個(gè)方案中任選一個(gè)加以證明(如圖(1)).
(2)如果把條件中的“正方形”改為“長(zhǎng)方形”,并設(shè)AB=2,BC=3(如圖(2)),試探究EG、FH之間有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論.
(3)如果把條件中的“EG⊥FH”改為“EG與FH的夾角為45°”,并假設(shè)正方形ABCD的邊長(zhǎng)為1,F(xiàn)H的長(zhǎng)為52(如圖(3)),試求EG的長(zhǎng)度.

5
2
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:2408引用:5難度:0.1
相似題
-
1.某數(shù)學(xué)興趣小組開展了一次活動(dòng),過程如下:
設(shè)∠BAC=θ(0°<θ<90°)小棒依次擺放在兩射線之間,并使小棒兩端分別落在兩射線上.
活動(dòng)一:
如圖甲所示,從點(diǎn)A1開始,依次向右擺放小棒,使小棒與小棒在端點(diǎn)處互相垂直,A1A2為第1根小棒.
數(shù)學(xué)思考:
(1)小棒能無限擺下去嗎?答:.(填“能“或“不能”)
(2)設(shè)AA1=A1A2=A2A3=1.
①θ=度;
②若記小棒A2n-1A2n的長(zhǎng)度為an(n為正整數(shù),如A1A2=a1,A3A4=a2,…),求出此時(shí)a2,a3的值,并直接寫出an(用含n的式子表示).
活動(dòng)二:
如圖乙所示,從點(diǎn)A1開始,用等長(zhǎng)的小棒依次向右擺放,其中A1A2為第1根小棒,且A1A2=AA1.
數(shù)學(xué)思考:
(3)若已經(jīng)向右擺放了3根小棒,則θ1=,θ2=,θ3=(用含θ的式子表示);
(4)若只能擺放4根小棒,求θ的范圍.發(fā)布:2025/6/25 8:0:1組卷:549引用:5難度:0.5 -
2.如圖,四邊形ABCD中,AC⊥BD交BD于點(diǎn)E,點(diǎn)F,M分別是AB,BC的中點(diǎn),BN平分∠ABE交AM于點(diǎn)N,AB=AC=BD.連接MF,NF.試說明:
(1)∠MBN=45°;
(2)△MFN∽△BDC.發(fā)布:2025/6/25 8:0:1組卷:100引用:1難度:0.3 -
3.如圖,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=4,BD=2,則BC=.
發(fā)布:2025/6/25 8:0:1組卷:282引用:6難度:0.7