已知函數(shù)f(x)=lnx-x-a(a∈R).若函數(shù)f(x)恰有兩個(gè)不同的極值點(diǎn)x1,x2(x1<x2).
(1)求a的取值范圍;
(2)是否存在實(shí)數(shù)a,使得[f(x1)-f(a)]2=[f(x2)]2成立?請(qǐng)說(shuō)明理由.
f
(
x
)
=
lnx
-
x
-
a
(
a
∈
R
)
[
f
(
x
1
)
-
f
(
a
)
]
2
=
[
f
(
x
2
)
]
2
【考點(diǎn)】利用導(dǎo)數(shù)研究函數(shù)的極值.
【答案】(1)(0,1).
(2)不存在,理由見(jiàn)解析.
(2)不存在,理由見(jiàn)解析.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:86引用:2難度:0.4
相似題
-
1.已知函數(shù)f(x)=(x-a)lnx(a∈R),它的導(dǎo)函數(shù)為f'(x).
(1)當(dāng)a=1時(shí),求f'(x)的零點(diǎn);
(2)若函數(shù)f(x)存在極小值點(diǎn),求a的取值范圍.發(fā)布:2024/12/29 13:0:1組卷:279引用:8難度:0.4 -
2.若函數(shù)
有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍為( )f(x)=e2x4-axex發(fā)布:2024/12/29 13:30:1組卷:124引用:4難度:0.5 -
3.定義:設(shè)f'(x)是f(x)的導(dǎo)函數(shù),f″(x)是函數(shù)f'(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱(chēng)點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”且“拐點(diǎn)”就是三次函數(shù)圖像的對(duì)稱(chēng)中心,已知函數(shù)
的對(duì)稱(chēng)中心為(1,1),則下列說(shuō)法中正確的有( ?。?/h2>f(x)=ax3+bx2+53(ab≠0)發(fā)布:2024/12/29 13:30:1組卷:181引用:7難度:0.5