【問題背景】在學完菱形的知識之后,小彬對菱形進行了研究:如圖,在菱形ABCD中,∠ABC=60°,E是射線AC上一點,F(xiàn)是BC的延長線上一點,且CF=AE,連接BE,EF.

【問題發(fā)現(xiàn)】(1)如圖1,當E是對角線AC的中點時,小彬發(fā)現(xiàn)有:BE=EF.請你證明他的發(fā)現(xiàn)是正確的.
【類比探究】(2)如圖2,若E是對角線AC上任意一點時,問題(1)中的結論是否還成立?請說明理由.
【拓展應用】(3)如圖3,若E是線段AC延長線上任意一點,連接AF,其他條件不變,∠1=30°,AB=2,請求出AF的長度.
【考點】四邊形綜合題.
【答案】(1)見解析;(2)見解析;(3).
2
7
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/5 8:0:9組卷:104引用:2難度:0.5
相似題
-
1.如圖,△AMN是邊長為2的等邊三角形,以AN,AM所在直線為邊的平行四邊形ABCD交MN于點E、F,且∠EAF=30°.
(1)當F、M重合時,求AD的長;
(2)當NE、FM滿足什么條件時,能使;32(NE+FM)=EF
(3)在(2)的條件下,求證:四邊形ABCD是菱形.發(fā)布:2025/5/26 2:30:2組卷:150引用:2難度:0.1 -
2.【探究發(fā)現(xiàn)】(1)如圖1,在四邊形ABCD中,對角線AC⊥BD,垂足是O,求證:AB2+CD2=AD2+BC2.
【拓展遷移】(2)如圖2,以三角形ABC的邊AB、AC為邊向外作正方形ABDE和正方形ACFG,求證:CE⊥BG.
(3)如圖3,在(2)小題條件不變的情況下,連接GE,若∠EGA=90°,GE=6,AG=8,求BC的長.發(fā)布:2025/5/26 2:30:2組卷:957引用:6難度:0.3 -
3.問題情境:
在數(shù)學課上,老師給出了這樣一道題:如圖1,在△ABC中,AB=AC=6,∠BAC=30°,求BC的長.
探究發(fā)現(xiàn):
(1)如圖2,勤奮小組經(jīng)過思考后發(fā)現(xiàn):把△ABC繞點A順時針旋轉90°得到△ADE,連接BD,BE,利用直角三角形的性質(zhì)可求BC的長,其解法如下:
過點B作BH⊥DE交DE的延長線于點H,則BC=DE=DH-HE.
△ABC繞點A順時針旋轉90°得到△ADE,AB=AC=6,∠BAC=30°∴……
請你根據(jù)勤奮小組的思路,完成求解過程.
拓展延伸:
(2)如圖3,縝密小組的同學在勤奮小組的啟發(fā)下,把△ABC繞點A順時針旋轉120°后得到△ADE,連接BD,CE交于點F,交AB于點G,請你判斷四邊形ADFC的形狀并證明;
(3)奇異小組的同學把圖3中的△BGF繞點B順時針旋轉,在旋轉過程中,連接AF,發(fā)現(xiàn)AF的長度不斷變化,直接寫出AF的最大值和最小值.發(fā)布:2025/5/26 3:0:2組卷:83引用:1難度:0.3