如圖1,小明將一張長為4、寬為3的矩形紙片沿對角線剪開,得到兩張三角形紙片(如圖2),將這兩張三角紙片擺成如圖3的形狀,但點(diǎn)B、C、F、D在同一條直線上,且點(diǎn)C與點(diǎn)F重合(在圖3至圖6中統(tǒng)一用點(diǎn)F表示)小明在對這兩張三角形紙片進(jìn)行如下操作時遇到了三個問題,請你幫助解決.

(1)將圖3中的△ABF沿BD向右平移到圖4中△A1FC1的位置,其中點(diǎn)B與點(diǎn)F重合,請你求出平移的距離 33;
(2)在圖5中若∠GFD=60°,則圖3中的△ABF繞點(diǎn) DD按 順時針順時針方向旋轉(zhuǎn) 30°30°(填度數(shù),要求滿足0°<α<180°)到圖5的位置;

(3)將圖3中的△ABF沿直線AF翻折到圖6的位置,AB交DE于點(diǎn)H,試問:△AEH和△HB1D的面積大小關(guān)系.說明理由.
【考點(diǎn)】四邊形綜合題.
【答案】3;D;順時針;30°
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:264引用:1難度:0.2
相似題
-
1.【問題情境】
如圖1,在等腰直角三角形ABC中,∠ACB=90°,F(xiàn)是AC邊上一動點(diǎn)(點(diǎn)F不與點(diǎn)A,C重合),以CF為邊在△ABC外作正方形CDEF,連接AD,BF.
【探究展示】
(1)①猜想:圖1中,線段BF,AD的數(shù)量關(guān)系是 ,位置關(guān)系是 .
②如圖2,將圖1中的正方形CDEF繞點(diǎn)C順時針旋轉(zhuǎn)α,BF交AC于點(diǎn)H,交AD于點(diǎn)O,①中的結(jié)論是否仍然成立?請說明理由.
【拓展延伸】
(2)如圖3,將【問題情境】中的等腰直角三角形ABC改為直角三角形ABC,∠ACB=90°,正方形CDEF改為矩形CDEF,連接BF并延長,交AC于點(diǎn)H,交AD于點(diǎn)O,連接BD,AF.若AC=4,BC=3,CD=,CF=1,求BD2+AF2的值.43發(fā)布:2025/5/25 23:30:1組卷:246引用:3難度:0.4 -
2.已知△CAB和△CDE均為等腰直角三角形,∠DCE=∠ACB=90°.
發(fā)現(xiàn):如圖-1,點(diǎn)D落在AC上,點(diǎn)E落在CB上,則直線AD和直線BE的位置關(guān)系是 ;線段AD和線段BE的數(shù)量關(guān)系是 .
探究:在圖-1的基礎(chǔ)上,將△CDE繞點(diǎn)C逆時針旋轉(zhuǎn),得到圖-2.
求證:(1)AD=BE,(2)BE⊥AD.
應(yīng)用:如圖-3,四邊形ABCD是正方形,E是平面上一點(diǎn),且AE=3,DE=.2
直接寫出CE的取值范圍.發(fā)布:2025/5/26 0:0:1組卷:84引用:2難度:0.4 -
3.已知正方形ABCD,AB=4,點(diǎn)E是BC邊上一點(diǎn)(不與B、C重合),將EA繞點(diǎn)E順時針旋轉(zhuǎn)90°至EF,連接AF,設(shè)EF交CD于點(diǎn)P,AF交CD于點(diǎn)Q.
(1)如圖1,線段EQ、BE與DQ之間有怎樣的數(shù)量關(guān)系,請證明你的發(fā)現(xiàn);
(2)如圖2,連接DF,則AF+DF的最小值是 (直接寫出答案);
(3)如圖3,連接CF,①若BE=m,用m的代數(shù)式表示;FPPE
②若m=4-4,求∠EQF的度數(shù).2發(fā)布:2025/5/26 0:0:1組卷:252引用:1難度:0.3