閱讀下面材料:
小昊遇到這樣一個問題:如圖1,在△ABC中,∠ACB=90°,BE是AC邊上的中線,點D在BC邊上,CD:BD=1:2,AD與BE相交于點P,求APPD的值.
小昊發(fā)現(xiàn),過點A作AF∥BC,交BE的延長線于點F,通過構造△AEF,經(jīng)過推理和計算能夠使問題得到解決(如圖2).
請回答:APPD的值為3232.
參考小昊思考問題的方法,解決問題:
如圖 3,在△ABC中,∠ACB=90°,點D在BC的延長線上,AD與AC邊上的中線BE的延長線交于點P,DC:BC:AC=1:2:3.
(1)求APPD的值;
(2)若CD=2,則BP=66.

AP
PD
AP
PD
3
2
3
2
AP
PD
【答案】;6
3
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/8/15 9:0:1組卷:2222引用:20難度:0.1
相似題
-
1.如圖,在Rt△ABC中,∠ABC=90°.AB=BC.點D是線段AB上的一點,連接CD.過點B作BG⊥CD,分別交CD、CA于點E、F,與過點A且垂直于AB的直線相交于點G,連接DF,給出以下四個結論:①
=AGAB;②若點D是AB的中點,則AF=AFFCAB;③當B、C、F、D四點在同一個圓上時,DF=DB;④若23=DBAD,則S△ABC=9S△BDF,其中正確的結論序號是( ?。?/h2>12發(fā)布:2025/6/24 16:30:1組卷:2780引用:11難度:0.2 -
2.在圖形的全等變換中,有旋轉變換,翻折(軸對稱)變換和平移變換.一次數(shù)學活動課上,老師組織大家利用矩形進行圖形變換的探究活動.
(1)第一小組的同學發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點O,Rt△ADC可以由Rt△ABC經(jīng)過一種變換得到,請你寫出這種變換的過程
(2)第二小組同學將矩形紙片ABCD按如下順序進行操作:對折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點B落在EF上的點B′處(如圖2-2),這樣能得到∠B′GC的大小,你知道∠B′GC的大小是多少嗎?請寫出求解過程.
(3)第三小組的同學,在一個矩形紙片上按照圖3-1的方式剪下△ABC,其中BA=BC,將△ABC沿著直線AC的方向依次進行平移變換,每次均移動AC的長度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,AC長為a,現(xiàn)以AD、AF和AH為三邊構成一個新三角形,已知這個新三角形面積小于15,請你幫助該小組求出a可能的最大整數(shù)值.15
(4)探究活動結束后,老師給大家留下了一道探究題:
如圖4-1,已知AA′=BB′=CC′=2,∠AOB′=∠BOC′=∠COA′=60°,請利用圖形變換探究S△AOB′+S△BOC′+S△COA′與的大小關系.3發(fā)布:2025/6/24 14:30:1組卷:370引用:12難度:0.5 -
3.【探究發(fā)現(xiàn)】如圖1,△ABC是等邊三角形,∠AEF=60°,EF交等邊三角形外角平分線CF所在的直線于點F,當點E是BC的中點時,有AE=EF成立;
【數(shù)學思考】某數(shù)學興趣小組在探究AE、EF的關系時,運用“從特殊到一般”的數(shù)學思想,通過驗證得出如下結論:
當點E是直線BC上(B,C除外)任意一點時(其它條件不變),結論AE=EF仍然成立.
假如你是該興趣小組中的一員,請你從“點E是線段BC上的任意一點”;“點E是線段BC延長線上的任意一點”;“點E是線段BC反向延長線上的任意一點”三種情況中,任選一種情況,在備用圖1中畫出圖形,并證明AE=EF.
【拓展應用】當點E在線段BC的延長線上時,若CE=BC,在備用圖2中畫出圖形,并運用上述結論求出S△ABC:S△AEF的值.發(fā)布:2025/6/24 15:30:2組卷:1871引用:6難度:0.1