如圖1,已知AB∥CD,直線AB、CD把平面分成①、②、③三個區(qū)域(直線AB、CD不屬于①、②、③中任何一個區(qū)域).點P是直線AB、CD、AC外一點,聯(lián)結(jié)PA、PC,可得∠PAB、∠PCD、∠APC.
(1)如圖2,當(dāng)點P位于第①區(qū)域一位置時,請?zhí)顚憽螦PC=∠PAB+∠PCD的理由.
解:過點P作PE∥AB,
因為AB∥CD,PE∥AB,
所以PE∥CD(平行于同一直線的兩直線平行平行于同一直線的兩直線平行).
因為PE∥AB,
所以∠APE=∠PAB(兩直線平行,內(nèi)錯角相等兩直線平行,內(nèi)錯角相等).
同理∠CPE=∠PCD.
因此∠APE+∠CPE=∠PAB+∠PCD.
即∠APC=∠PAB+∠PCD.
(2)在第(1)小題中改變點P的位置,如圖3所示,求∠APC+∠PAB+∠PCD等于多少度?為什么?
(3)當(dāng)點P在第②區(qū)域時,∠PAB、∠PCD、∠APC有怎樣的數(shù)量關(guān)系?請畫出圖形,并直接寫出相應(yīng)的結(jié)論.

【考點】平行線的判定與性質(zhì);平行公理及推論.
【答案】平行于同一直線的兩直線平行;兩直線平行,內(nèi)錯角相等
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/8 12:30:1組卷:107引用:3難度:0.6