綜合與實踐
綜合與實踐課上,老師與同學們以“特殊的三角形”為主題開展數(shù)學活動.
(1)操作判斷
如圖1,在△ABC中,∠ABC=90°,AB=BC,點P是直線AC上一動點.
操作:連接BP,將線段BP繞點P逆時針旋轉90°得到PD,連接DC,如圖2.
根據(jù)以上操作,判斷:如圖3,當點P與點A重合時,則四邊形ABCD的形狀是 正方形正方形;

(2)遷移探究
①如圖4,當點P與點C重合時,連接DB,判斷四邊形ABDC的形狀,并說明理由;
②當點P與點A,點C都不重合時,試猜想DC與BC的位置關系,并利用圖2證明你的猜想;
(3)拓展應用
當點P與點A,點C都不重合時,若AB=4,AP=3,請直接寫出CD的長.
【考點】四邊形綜合題.
【答案】正方形
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:193引用:1難度:0.2
相似題
-
1.(1)如圖1,將直角三角板的直角頂點放在正方形ABCD上,使直角頂點與D重合,三角板的一邊交AB于點P,另一邊交BC的延長線于點Q.求證:DP=DQ;
(2)如圖2,將(1)中“正方形ABCD”改成“矩形ABCD”,且DC=2DA,其他條件不變,試猜想DQ與DP的數(shù)量關系,并說明理由;
(3)在(2)的條件下,若PQ=10,DA=4,則AP的長度為 .(直接寫出答案)發(fā)布:2025/5/21 17:0:2組卷:60引用:2難度:0.5 -
2.【基礎問題】
如圖①,矩形ABCD中,點E為AB邊上一點,連接DE,作EF⊥DE交BC于點F,且DE=FE,求證:△AED≌△BFE.
【拓展延伸】
(1)如圖②,點E為平行四邊形ABCD內(nèi)部一點,EA=EB,DA⊥AE,作DF⊥BA交BA延長線于點F,若DA=2EA,AB=5,則平行四邊形ABCD的面積為 ;
(2)如圖③,在正方形ABCD中,AD=6,在CD邊上取一點E,使EC=2DE,將△AED沿AE翻折到△AED′位置,作D′F⊥AB于點F,在D′F右側作∠FGD'=90°,則△FGD'面積的最大值為 .發(fā)布:2025/5/21 17:0:2組卷:160引用:1難度:0.3 -
3.如圖,矩形ABCD中,AB=2
,BC=4,連結對角線AC,E為AC的中點,F(xiàn)為AB邊上的動點,連結EF,作點C關于EF的對稱點C′,連結C′E,C′F,若△EFC′與△ACF的重疊部分(△EFG)面積等于△ACF的3,則BF=.14發(fā)布:2025/5/21 18:0:1組卷:1667引用:8難度:0.1