牛頓迭代法亦稱切線法,它是求函數(shù)零點近似解的另一種方法.若定義xk(k∈N)是函數(shù)零點近似解的初始值,過點Pk(xk,f(xk))的切線為y=f'(xk)(x-xk)+f(xk),切線與x軸交點的橫坐標為xk+1,即為函數(shù)零點近似解的下一個初始值,以此類推,滿足精度的初始值即為函數(shù)零點近似解.設(shè)函數(shù)f(x)=x2-5,滿足x0=1.應(yīng)用上述方法,則x3=( ?。?/h1>
【考點】利用導數(shù)研究曲線上某點切線方程.
【答案】C
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:63引用:1難度:0.6
相關(guān)試卷