如圖,排球運動員站在點O處練習(xí)發(fā)球,將球從O點正上方的B處發(fā)出,球每次出手后的運動軌跡都是形狀相同的拋物線,且拋物線的最高點C到y(tǒng)軸總是保持6米的水平距離,豎直高度總是比出手點B高出1米,已知OB=m米,排球場的邊界點A距O點的水平距離OA為18米,球網(wǎng)EF高度為2.4米,且OE=12OA.
(1)C點的坐標(biāo)為 (6,m+1)(6,m+1)(用含m的代數(shù)式表示)
(2)當(dāng)m=2時,求拋物線的表達(dá)式.
(3)當(dāng)m=2時,球能否越過球網(wǎng)?球會不會出界?請說明理由.
(4)若運動員調(diào)整起跳高度,使球在點A處落地,此時形成的拋物線記為L1,球落地后立即向右彈起,形成另一條與L1形狀相同的拋物線L2,且此時排球運行的最大高度為1米,球場外有一個可以移動的縱切面為梯形的無蓋排球回收框MNPQ(MQ∥PN),其中MQ=0.5米,MN=2米,NP=89米,若排球經(jīng)過向右反彈后沿L2的軌跡落入回收框MNPQ內(nèi)(下落過程中碰到P、Q點均視為落入框內(nèi)),設(shè)M點橫坐標(biāo)的最大值與最小值的差為d,請直接寫出d的值.
?
1
2
8
9
【考點】二次函數(shù)綜合題.
【答案】(6,m+1)
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/20 8:0:9組卷:385引用:1難度:0.4
相似題
-
1.已知△ABC是邊長為4的等邊三角形,BC在x軸上,點D為BC的中點,點A在第一象限內(nèi),AB與y軸的正半軸交于點E,已知點B(-1,0).
(1)點A的坐標(biāo):,點E的坐標(biāo):;
(2)若二次函數(shù)y=-x2+bx+c過點A、E,求此二次函數(shù)的解析式;637
(3)P是AC上的一個動點(P與點A、C不重合)連接PB、PD,設(shè)l是△PBD的周長,當(dāng)l取最小值時,求點P的坐標(biāo)及l(fā)的最小值并判斷此時點P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.發(fā)布:2025/5/24 7:0:1組卷:236引用:3難度:0.3 -
2.如圖,拋物線y=ax2+bx+3(a≠0)與x軸交于A,B兩點,與y軸交于點C,點A的坐標(biāo)是(3,0),拋物線的對稱軸是直線x=1.
(1)求拋物線的函數(shù)表達(dá)式;
(2)連接BC,AC,若點P為第四象限內(nèi)拋物線上一點,且∠PCA=∠BCO,求點P的坐標(biāo);
(3)過點C作x軸的平行線交拋物線于點D過D點作DE⊥x軸于點E得到矩形OCDE,將△OBC沿x軸向右平移,當(dāng)B點與E重合時結(jié)束,設(shè)平移距離為t,△OBC與矩形OCDE重疊面積為S,請直接寫出S與t的函數(shù)關(guān)系.發(fā)布:2025/5/24 7:0:1組卷:237引用:1難度:0.4 -
3.如圖,已知拋物線y=ax2+bx+c與x軸交于A、B(3,0)兩點,與y軸交于點C,頂點為D(2,-1),直線l是拋物線的對稱軸.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點M是直線l上的動點,當(dāng)以點M、B、D為頂點的三角形與△ABC相似時,求點M的坐標(biāo).發(fā)布:2025/5/24 7:0:1組卷:470引用:3難度:0.3
相關(guān)試卷