如圖1,在Rt△ABC中,∠ABC=90°,∠BAC=30°,BC=2,點(diǎn)D,E分別是AB,AC中點(diǎn),連接DE.在同一平面內(nèi),將△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),射線BD,CE相交于點(diǎn)P.
(1)如圖2,在旋轉(zhuǎn)過(guò)程中,∠BPC的角度是否不變?若不變,請(qǐng)求出∠BPC的度數(shù).
(2)如圖2,當(dāng)∠BAD=120°時(shí),求線段PC的長(zhǎng).
(3)連接DC,當(dāng)線段PC取得最小值時(shí),求線段DC的值.

【考點(diǎn)】幾何變換綜合題.
【答案】(1)∠BPC的角度不變,∠BPC=30°,理由見(jiàn)解析過(guò)程;
(2)CP=;
(3)DC=或.
(2)CP=
10
7
7
(3)DC=
7
19
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1026引用:1難度:0.4
相似題
-
1.如圖,四邊形ABCD是矩形紙片,AB=2.對(duì)折矩形紙片ABCD,使AD與BC重合,折痕為EF;展平后再過(guò)點(diǎn)B折疊矩形紙片,使點(diǎn)A落在EF上的點(diǎn)N,折痕BM與EF相交于點(diǎn)Q;再次展平,連接BN,MN,延長(zhǎng)MN交BC于點(diǎn)G.有如下結(jié)論:
①∠ABN=60°;②AM=1;③QN=;④△BMG是等邊三角形;⑤P為線段BM上一動(dòng)點(diǎn),H是BN的中點(diǎn),則PN+PH的最小值是33.3
其中正確結(jié)論的序號(hào)是.發(fā)布:2025/5/23 1:30:2組卷:3126引用:15難度:0.5 -
2.如圖1,四邊形ABCD中,∠BCD=90°,AC=AD,AF⊥CD于點(diǎn)F,交BD于點(diǎn)E,∠ABD=2∠BDC.
(1)判斷線段AE與BC的關(guān)系,并說(shuō)明理由;
(2)若∠BDC=30°,求∠ACD的度數(shù);
(3)如圖2,在(2)的條件下,線段BD與AC交于點(diǎn)O,點(diǎn)G是△BCE內(nèi)一點(diǎn),∠CGE=90°,GE=3,將△CGE繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得△CMH,E點(diǎn)對(duì)應(yīng)點(diǎn)為M,G點(diǎn)的對(duì)應(yīng)點(diǎn)為H,且點(diǎn)O,G,H在一條直線上直接寫(xiě)出OG+OH的值.發(fā)布:2025/5/22 19:0:1組卷:523引用:1難度:0.2 -
3.在△ABC中,AB=AC,∠BAC=α,點(diǎn)P為線段CA延長(zhǎng)線上一動(dòng)點(diǎn),連接PB,將線段PB繞點(diǎn)P逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α,得到線段PD,連接DB,DC.
(1)如圖1,當(dāng)α=60°時(shí),
①求證:PA=DC;
②求∠DCP的度數(shù);
(2)如圖2,當(dāng)α=120°時(shí),請(qǐng)直接寫(xiě)出PA和DC的數(shù)量關(guān)系.
(3)當(dāng)α=120°時(shí),若AB=6,BP=,請(qǐng)直接寫(xiě)出點(diǎn)D到CP的距離為.31發(fā)布:2025/5/23 4:0:1組卷:4734引用:13難度:0.1
相關(guān)試卷