若直線y=-2x+4與y軸交于點A,與x軸交于點B,二次函數(shù)y=ax2+3x+c的圖象經(jīng)過點A,交x軸于C、D兩點,且拋物線的對稱軸為直線x=32.
(1)求二次函數(shù)的解析式;
(2)過點C作直線CE∥AB交y軸于點E,點P是直線CE上一動點,點Q是第一象限拋物線上一動點,求四邊形APBQ面積的最大值與此時點Q的坐標;
(3)在(2)的結(jié)論下,點E是拋物線的頂點,對稱軸與x軸交于點G,直線EQ交x軸于點F,在拋物線的對稱軸上是否存在一點M,使得∠MFQ+∠CAO=45°,求點M的坐標.

3
2
【考點】二次函數(shù)綜合題.
【答案】(1)y=-x2+3x+4.
(2),(,).
(3)(,)或(,25).
(2)
49
4
5
2
21
4
(3)(
3
2
25
16
3
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1146引用:4難度:0.2
相似題
-
1.如圖,在平面直角坐標系中,O為坐標原點,拋物線y=ax2+bx+c與x軸交于點A、B(A左B右),與y軸交于點C,直線y=-x+3經(jīng)過點B、C,AB=4.
(1)求拋物線的解析式;
(2)點D在直線BC上方的拋物線上,過點D作x軸的垂線,垂足為F,交BC于點E,DE=2EF,求點D的坐標;
(3)在(2)的條件下,點G在點B右側(cè)x軸上,連接CG,AC,,過點G作GP⊥x軸交拋物線于點P,連接BP,點H在y軸負半軸上,連接HF,若∠OHF+∠GPB=45°,連接DH,求直線DH的解析式.∠ACO=12∠AGC發(fā)布:2025/5/23 12:30:2組卷:170引用:1難度:0.3 -
2.如圖,拋物線
與x軸相交于點A,與y軸交于點B,C為線段OA上的一個動點,過點C作x軸的垂線,交直線AB于點D,交該拋物線于點E.y=-43x2+103x+2
(1)求直線AB的表達式;
(2)當△BED為直角三角形時,求點C的坐標;
(3)當∠BED=2∠OAB時,求△BED的面積.發(fā)布:2025/5/23 13:0:1組卷:304引用:1難度:0.1 -
3.已知二次函數(shù)解析式為y=x2-bx+2b-3.
(1)當拋物線經(jīng)過點(1,2)和點(m,n)時,等式m2-4m-n=-5是否成立?并說明理由;
(2)已知點P(4,5)和點Q(-1,-5),且線段PQ與拋物線只有一個交點,求b的取值范圍.發(fā)布:2025/5/23 13:0:1組卷:278引用:1難度:0.4